YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Indirect Strain Control in Aluminum Stamp Formed Pans

    Source: Journal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 008::page 81013
    Author:
    Emblom, William J.
    DOI: 10.1115/1.4036489
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A stamp forming die whose flexible blank holder (BH) was designed using finite element (FE) analysis was built. The tooling also included active draw beads, local wrinkling sensors, and local force transducers. Wrinkling was controlled using a proportional–integral–derivative (PID) feedback loop and blank holder force (BHF). Local forces in the tooling were also controlled using blank holder forces in a PID feedback loop. A third closed-loop control system that could be used to control local punch forces (LPF) near draw beads featured an advanced PID controller with a Smith Predictor and Kalman Filter. A Bang–bang controller was also incorporated into that control system in order to prevent control saturation. Fuzzy logic was used to transition from one controller to the other. Once closed-loop control was implemented, tests were performed in order to evaluate the strains in the pans for various forming conditions. These results were compared to open-loop tests and it was found that the strains' paths for closed-loop control tests resulted in convergence and were further from the forming limit than strains from open-loop control tests. Furthermore, it was seen that the strains in critical regions had more uniform strain fields once closed-loop control of local punch forces was implemented. Hence, it was concluded that controlling local punch forces resulted in the indirect control of strains in critical regions.
    • Download: (3.385Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Indirect Strain Control in Aluminum Stamp Formed Pans

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234811
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorEmblom, William J.
    date accessioned2017-11-25T07:17:52Z
    date available2017-11-25T07:17:52Z
    date copyright2017/11/5
    date issued2017
    identifier issn1087-1357
    identifier othermanu_139_08_081013.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234811
    description abstractA stamp forming die whose flexible blank holder (BH) was designed using finite element (FE) analysis was built. The tooling also included active draw beads, local wrinkling sensors, and local force transducers. Wrinkling was controlled using a proportional–integral–derivative (PID) feedback loop and blank holder force (BHF). Local forces in the tooling were also controlled using blank holder forces in a PID feedback loop. A third closed-loop control system that could be used to control local punch forces (LPF) near draw beads featured an advanced PID controller with a Smith Predictor and Kalman Filter. A Bang–bang controller was also incorporated into that control system in order to prevent control saturation. Fuzzy logic was used to transition from one controller to the other. Once closed-loop control was implemented, tests were performed in order to evaluate the strains in the pans for various forming conditions. These results were compared to open-loop tests and it was found that the strains' paths for closed-loop control tests resulted in convergence and were further from the forming limit than strains from open-loop control tests. Furthermore, it was seen that the strains in critical regions had more uniform strain fields once closed-loop control of local punch forces was implemented. Hence, it was concluded that controlling local punch forces resulted in the indirect control of strains in critical regions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIndirect Strain Control in Aluminum Stamp Formed Pans
    typeJournal Paper
    journal volume139
    journal issue8
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4036489
    journal fristpage81013
    journal lastpage081013-10
    treeJournal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian