YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Acute Optogenetic Modulation of Cardiac Twitch Dynamics Explored Through Modeling

    Source: Journal of Biomechanical Engineering:;2016:;volume( 138 ):;issue: 011::page 111005
    Author:
    Aboelkassem, Yasser
    ,
    Campbell, Stuart G.
    DOI: 10.1115/1.4034655
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Optogenetic approaches allow cellular membrane potentials to be perturbed by light. When applied to muscle cells, mechanical events can be controlled through a process that could be termed “optomechanics.” Besides functioning as an optical on/off switch, we hypothesized that optomechanical control could include the ability to manipulate the strength and duration of contraction events. To explore this possibility, we constructed an electromechanical model of the human ventricular cardiomyocyte while adding a representation of channelrhodopsin-2 (ChR2), a light-activated channel commonly used in optogenetics. Two hybrid stimulus protocols were developed that combined light-based stimuli with traditional electrical current (all-or-none) excitation. The first protocol involved delivery of a subthreshold optical stimulus followed 50–90 ms later by an electrical stimulus. The result was a graded inhibition of peak cellular twitch force in concert with a prolongation of the intracellular Ca2+ transient. The second protocol was comprised of an electrical stimulus followed by a long light pulse (250–350 ms) that acted to prolong the cardiac action potential (AP). This created a pulse duration-dependent prolongation of the intracellular Ca2+ transient that in turn altered the rate of muscle relaxation without changing peak twitch force. These results illustrate the feasibility of acute, optomechanical manipulation of cardiomyocyte contraction and suggest that this approach could be used to probe the dynamic behavior of the cardiac sarcomere without altering its intrinsic properties. Other experimentally meaningful stimulus protocols could be designed by making use of the optomechanical cardiomyocyte model presented here.
    • Download: (2.474Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Acute Optogenetic Modulation of Cardiac Twitch Dynamics Explored Through Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234808
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorAboelkassem, Yasser
    contributor authorCampbell, Stuart G.
    date accessioned2017-11-25T07:17:52Z
    date available2017-11-25T07:17:52Z
    date copyright2016/10/21
    date issued2016
    identifier issn0148-0731
    identifier otherbio_138_11_111005.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234808
    description abstractOptogenetic approaches allow cellular membrane potentials to be perturbed by light. When applied to muscle cells, mechanical events can be controlled through a process that could be termed “optomechanics.” Besides functioning as an optical on/off switch, we hypothesized that optomechanical control could include the ability to manipulate the strength and duration of contraction events. To explore this possibility, we constructed an electromechanical model of the human ventricular cardiomyocyte while adding a representation of channelrhodopsin-2 (ChR2), a light-activated channel commonly used in optogenetics. Two hybrid stimulus protocols were developed that combined light-based stimuli with traditional electrical current (all-or-none) excitation. The first protocol involved delivery of a subthreshold optical stimulus followed 50–90 ms later by an electrical stimulus. The result was a graded inhibition of peak cellular twitch force in concert with a prolongation of the intracellular Ca2+ transient. The second protocol was comprised of an electrical stimulus followed by a long light pulse (250–350 ms) that acted to prolong the cardiac action potential (AP). This created a pulse duration-dependent prolongation of the intracellular Ca2+ transient that in turn altered the rate of muscle relaxation without changing peak twitch force. These results illustrate the feasibility of acute, optomechanical manipulation of cardiomyocyte contraction and suggest that this approach could be used to probe the dynamic behavior of the cardiac sarcomere without altering its intrinsic properties. Other experimentally meaningful stimulus protocols could be designed by making use of the optomechanical cardiomyocyte model presented here.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAcute Optogenetic Modulation of Cardiac Twitch Dynamics Explored Through Modeling
    typeJournal Paper
    journal volume138
    journal issue11
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4034655
    journal fristpage111005
    journal lastpage111005-11
    treeJournal of Biomechanical Engineering:;2016:;volume( 138 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian