YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Radial Error Motion Measurement of Ultraprecision Axes of Rotation With Nanometer Level Precision

    Source: Journal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 007::page 71017
    Author:
    Shu, Qiang
    ,
    Zhu, Mingzhi
    ,
    Liu, XingBao
    ,
    Cheng, Heng
    DOI: 10.1115/1.4036349
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Error motion of an ultraprecision axis of rotation has great influences on form error of machined parts. This paper gives a complete error analysis for the measurement procedure including nonlinearity error of capacitive displacement probes, misalignment error of the probes, eccentric error of artifact balls, environmental error, and error caused by different error separation methods. Nonlinearity of the capacitive displacement probe targeting a spherical surface is investigated through experiments. It is found that the additional probe output caused by lateral offset of the probe relative to the artifact ball greatly affects the measurement accuracy. Furthermore, it is shown that error motions in radial and axial directions together with eccentric rotation of the artifact lead to lateral offset. A novel measurement setup which integrates an encoder and an adjustable artifact is designed to ensure measurement repeatability by a zero index signal from the encoder. Moreover, based on the measurement setup, once roundness of the artifact is calibrated, roundness of the artifact can be accurately compensated when radial error motion is measured, and this method improves measurement efficiency while approaches accuracy comparable to that of error separation methods implemented alone. Donaldson reversal and three-probe error separation methods were implemented, and the maximum difference of the results of the two methods is below 14 nm. Procedure of uncertainty estimation of radial error motion is given in detail by analytical analysis and Monte Carlo simulation. The combined uncertainty of radial error motion measurement of an aerostatic spindle with Donaldson reversal and three-probe methods is 14.8 nm and 13.9 nm (coverage k = 2), respectively.
    • Download: (1.987Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Radial Error Motion Measurement of Ultraprecision Axes of Rotation With Nanometer Level Precision

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234794
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorShu, Qiang
    contributor authorZhu, Mingzhi
    contributor authorLiu, XingBao
    contributor authorCheng, Heng
    date accessioned2017-11-25T07:17:50Z
    date available2017-11-25T07:17:50Z
    date copyright2017/18/4
    date issued2017
    identifier issn1087-1357
    identifier othermanu_139_07_071017.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234794
    description abstractError motion of an ultraprecision axis of rotation has great influences on form error of machined parts. This paper gives a complete error analysis for the measurement procedure including nonlinearity error of capacitive displacement probes, misalignment error of the probes, eccentric error of artifact balls, environmental error, and error caused by different error separation methods. Nonlinearity of the capacitive displacement probe targeting a spherical surface is investigated through experiments. It is found that the additional probe output caused by lateral offset of the probe relative to the artifact ball greatly affects the measurement accuracy. Furthermore, it is shown that error motions in radial and axial directions together with eccentric rotation of the artifact lead to lateral offset. A novel measurement setup which integrates an encoder and an adjustable artifact is designed to ensure measurement repeatability by a zero index signal from the encoder. Moreover, based on the measurement setup, once roundness of the artifact is calibrated, roundness of the artifact can be accurately compensated when radial error motion is measured, and this method improves measurement efficiency while approaches accuracy comparable to that of error separation methods implemented alone. Donaldson reversal and three-probe error separation methods were implemented, and the maximum difference of the results of the two methods is below 14 nm. Procedure of uncertainty estimation of radial error motion is given in detail by analytical analysis and Monte Carlo simulation. The combined uncertainty of radial error motion measurement of an aerostatic spindle with Donaldson reversal and three-probe methods is 14.8 nm and 13.9 nm (coverage k = 2), respectively.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRadial Error Motion Measurement of Ultraprecision Axes of Rotation With Nanometer Level Precision
    typeJournal Paper
    journal volume139
    journal issue7
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4036349
    journal fristpage71017
    journal lastpage071017-11
    treeJournal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian