YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interlaminar Toughening of GFRP—Part I: Bonding Improvement Through Diffusion and Precipitation

    Source: Journal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 007::page 71010
    Author:
    Bian, Dakai
    ,
    Beeksma, Bradley R.
    ,
    Shim, D. J.
    ,
    Jones, Marshall
    ,
    Lawrence Yao, Y.
    DOI: 10.1115/1.4036126
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A low concentrated polystyrene (PS) additive to epoxy is used, since it is able to reduce the curing reaction rate but not at the cost of increasing viscosity and decreasing glass transition temperature of the curing epoxy. The modified epoxy is cocured with a compatible thermoplastic interleaf during the vacuum assisted resin transfer molding (VARTM) to toughen the interlaminar of the composites. Using viscometry, the solubilities of thermoplastics (TPs) polycarbonate (PC), polyetherimide (PEI), and polysulfone (PSU) are determined to predict their compatibility with epoxy. The diffusion and precipitation process between the most compatible polymer PSU and epoxy formed semi-interpenetration networks (semi-IPN). To optimize bonding adhesion, these diffusion and precipitation regions were studied via optical microscopy under curing temperatures from 25 °C to 120 °C and PS additive concentrations to epoxy of 0–5%. Uniaxial tensile tests were performed to quantify the effects of diffusion and precipitation regions on composite delamination resistance and toughness. Crack paths were observed to characterize crack propagation and arrest mechanism. Fracture surfaces were examined by scanning electron microscopy (SEM) to characterize the toughening mechanism of the thermoplastic interleaf reinforcements. The chemically etched interface between diffusion and precipitation regions showed semi-IPN morphology at different curing temperatures. Results revealed deeper diffusion and precipitation regions increase energy required to break semi-IPN for crack propagation resulting in crack arrests and improved toughness.
    • Download: (2.936Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interlaminar Toughening of GFRP—Part I: Bonding Improvement Through Diffusion and Precipitation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234787
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorBian, Dakai
    contributor authorBeeksma, Bradley R.
    contributor authorShim, D. J.
    contributor authorJones, Marshall
    contributor authorLawrence Yao, Y.
    date accessioned2017-11-25T07:17:50Z
    date available2017-11-25T07:17:50Z
    date copyright2017/24/3
    date issued2017
    identifier issn1087-1357
    identifier othermanu_139_07_071010.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234787
    description abstractA low concentrated polystyrene (PS) additive to epoxy is used, since it is able to reduce the curing reaction rate but not at the cost of increasing viscosity and decreasing glass transition temperature of the curing epoxy. The modified epoxy is cocured with a compatible thermoplastic interleaf during the vacuum assisted resin transfer molding (VARTM) to toughen the interlaminar of the composites. Using viscometry, the solubilities of thermoplastics (TPs) polycarbonate (PC), polyetherimide (PEI), and polysulfone (PSU) are determined to predict their compatibility with epoxy. The diffusion and precipitation process between the most compatible polymer PSU and epoxy formed semi-interpenetration networks (semi-IPN). To optimize bonding adhesion, these diffusion and precipitation regions were studied via optical microscopy under curing temperatures from 25 °C to 120 °C and PS additive concentrations to epoxy of 0–5%. Uniaxial tensile tests were performed to quantify the effects of diffusion and precipitation regions on composite delamination resistance and toughness. Crack paths were observed to characterize crack propagation and arrest mechanism. Fracture surfaces were examined by scanning electron microscopy (SEM) to characterize the toughening mechanism of the thermoplastic interleaf reinforcements. The chemically etched interface between diffusion and precipitation regions showed semi-IPN morphology at different curing temperatures. Results revealed deeper diffusion and precipitation regions increase energy required to break semi-IPN for crack propagation resulting in crack arrests and improved toughness.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInterlaminar Toughening of GFRP—Part I: Bonding Improvement Through Diffusion and Precipitation
    typeJournal Paper
    journal volume139
    journal issue7
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4036126
    journal fristpage71010
    journal lastpage071010-9
    treeJournal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian