YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Continuous Direct Current on the Microtube Hydroforming Process

    Source: Journal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 003::page 34502
    Author:
    Wagner, Scott W.
    ,
    Ng, Kenny
    ,
    Emblom, William J.
    ,
    Camelio, Jaime A.
    DOI: 10.1115/1.4034790
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Research of the microtube hydroforming (MTHF) process is being investigated for potential medical and fuel cell applications. This is largely due to the fact that at the macroscale the tube hydroforming (THF) process, like most metal forming processes, has realized many advantages, especially when comparing products made using traditional machining processes. Unfortunately, relatively large forces compared to part size and high pressures are required to form the parts so the potential exists to create failed or defective parts. One method to reduce the forces and pressures during MTHF is to incorporate electrically assisted manufacturing (EAM) and electrically assisted forming (EAF) into the MTHF. The intent of both EAM and EAF is to use electrical current to lower the required deformation energy and increase the metal's formability. To reduce the required deformation energy, the applied electricity produces localized heating in the material in order to lower the material's yield stress. In many cases, the previous work has shown that EAF and EAM have resulted in metals being formed further than conventional forming methods alone without sacrificing the strength or ductility. Tests were performed using “as received” and annealed stainless steel 304 tubing. Results shown in this paper indicate that the ultimate tensile strength and bust pressures decrease with increased current while using EAM during MTHF. It was also shown that at high currents the microtubes experienced higher temperatures but were still well below the recrystallization temperature.
    • Download: (817.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Continuous Direct Current on the Microtube Hydroforming Process

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234710
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorWagner, Scott W.
    contributor authorNg, Kenny
    contributor authorEmblom, William J.
    contributor authorCamelio, Jaime A.
    date accessioned2017-11-25T07:17:39Z
    date available2017-11-25T07:17:39Z
    date copyright2016/6/10
    date issued2017
    identifier issn1087-1357
    identifier othermanu_139_03_034502.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234710
    description abstractResearch of the microtube hydroforming (MTHF) process is being investigated for potential medical and fuel cell applications. This is largely due to the fact that at the macroscale the tube hydroforming (THF) process, like most metal forming processes, has realized many advantages, especially when comparing products made using traditional machining processes. Unfortunately, relatively large forces compared to part size and high pressures are required to form the parts so the potential exists to create failed or defective parts. One method to reduce the forces and pressures during MTHF is to incorporate electrically assisted manufacturing (EAM) and electrically assisted forming (EAF) into the MTHF. The intent of both EAM and EAF is to use electrical current to lower the required deformation energy and increase the metal's formability. To reduce the required deformation energy, the applied electricity produces localized heating in the material in order to lower the material's yield stress. In many cases, the previous work has shown that EAF and EAM have resulted in metals being formed further than conventional forming methods alone without sacrificing the strength or ductility. Tests were performed using “as received” and annealed stainless steel 304 tubing. Results shown in this paper indicate that the ultimate tensile strength and bust pressures decrease with increased current while using EAM during MTHF. It was also shown that at high currents the microtubes experienced higher temperatures but were still well below the recrystallization temperature.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInfluence of Continuous Direct Current on the Microtube Hydroforming Process
    typeJournal Paper
    journal volume139
    journal issue3
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4034790
    journal fristpage34502
    journal lastpage034502-5
    treeJournal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian