YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Step Ring-Based Three-Dimensional Path Planning Via Graphics Processing Unit Simulation for Subtractive Three-Dimensional Printing

    Source: Journal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 003::page 31010
    Author:
    Wu, Zhengkai
    ,
    Tucker, Thomas M.
    ,
    Nath, Chandra
    ,
    Kurfess, Thomas R.
    ,
    Vuduc, Richard W.
    DOI: 10.1115/1.4034662
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, both software model visualization with path simulation and associated machining product are produced based on the step ring-based three-axis path planning to demo model-driven graphics processing unit (GPU) feature in tool path planning and 3D image model classification by GPU simulation. Subtractive 3D printing (i.e., 3D machining) is represented as integration between 3D printing modeling and computer numerical control (CNC) machining via GPU simulated software. Path planning is applied through visualization of surface material removal in high-resolution and 3D path simulation via ring selective path planning based on accessibility of path through pattern selection. First, the step ring selects critical features to reconstruct computer-aided design (CAD) design model as stereolithography (STL) voxel, and then, local optimization is attained within interested ring area for time and energy saving of GPU volume generation as compared to global automatic path planning with longer latency. The reconstructed CAD model comes from an original sample (GATech buzz) with 2D image information. CAD model for optimization and validation is adopted to sustain manufacturing reproduction based on system simulation feedback. To avoid collision with the produced path from retraction path, we pick adaptive ring path generation and prediction in each planning iteration, which may also minimize material removal. Moreover, we did partition analysis and G-code optimization for large-scale model and high density volume data. Image classification and grid analysis based on adaptive 3D tree depth are proposed for multilevel set partition of the model to define no cutting zones. After that, accessibility map is computed based on accessibility space for rotational angular space of path orientation to compare step ring-based pass planning verses global path planning of all geometries. Feature analysis via central processing unit (CPU) or GPU processor for GPU map computation contributes to high-performance computing and cloud computing potential through parallel computing application of subtractive 3D printing in the future.
    • Download: (2.704Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Step Ring-Based Three-Dimensional Path Planning Via Graphics Processing Unit Simulation for Subtractive Three-Dimensional Printing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234694
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorWu, Zhengkai
    contributor authorTucker, Thomas M.
    contributor authorNath, Chandra
    contributor authorKurfess, Thomas R.
    contributor authorVuduc, Richard W.
    date accessioned2017-11-25T07:17:38Z
    date available2017-11-25T07:17:38Z
    date copyright2016/6/10
    date issued2017
    identifier issn1087-1357
    identifier othermanu_139_03_031010.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234694
    description abstractIn this paper, both software model visualization with path simulation and associated machining product are produced based on the step ring-based three-axis path planning to demo model-driven graphics processing unit (GPU) feature in tool path planning and 3D image model classification by GPU simulation. Subtractive 3D printing (i.e., 3D machining) is represented as integration between 3D printing modeling and computer numerical control (CNC) machining via GPU simulated software. Path planning is applied through visualization of surface material removal in high-resolution and 3D path simulation via ring selective path planning based on accessibility of path through pattern selection. First, the step ring selects critical features to reconstruct computer-aided design (CAD) design model as stereolithography (STL) voxel, and then, local optimization is attained within interested ring area for time and energy saving of GPU volume generation as compared to global automatic path planning with longer latency. The reconstructed CAD model comes from an original sample (GATech buzz) with 2D image information. CAD model for optimization and validation is adopted to sustain manufacturing reproduction based on system simulation feedback. To avoid collision with the produced path from retraction path, we pick adaptive ring path generation and prediction in each planning iteration, which may also minimize material removal. Moreover, we did partition analysis and G-code optimization for large-scale model and high density volume data. Image classification and grid analysis based on adaptive 3D tree depth are proposed for multilevel set partition of the model to define no cutting zones. After that, accessibility map is computed based on accessibility space for rotational angular space of path orientation to compare step ring-based pass planning verses global path planning of all geometries. Feature analysis via central processing unit (CPU) or GPU processor for GPU map computation contributes to high-performance computing and cloud computing potential through parallel computing application of subtractive 3D printing in the future.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStep Ring-Based Three-Dimensional Path Planning Via Graphics Processing Unit Simulation for Subtractive Three-Dimensional Printing
    typeJournal Paper
    journal volume139
    journal issue3
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4034662
    journal fristpage31010
    journal lastpage031010-10
    treeJournal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian