YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Material Influence on Mitigation of Stress Corrosion Cracking Via Laser Shock Peening

    Source: Journal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 001::page 11002
    Author:
    Brandal, Grant
    ,
    Lawrence Yao, Y.
    DOI: 10.1115/1.4034283
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Stress corrosion cracking is a phenomenon that can lead to sudden failure of metallic components. Here, we use laser shock peening (LSP) as a surface treatment for mitigation of stress corrosion cracking (SCC), and explore how the material differences of 304 stainless steel, 4140 high strength steel, and 260 brass affect their mitigation. Cathodic charging of the samples in 1 M sulfuric acid was performed to accelerate hydrogen uptake. Nontreated stainless steel samples underwent hardness increases of 28%, but LSP treated samples only increased in the range of 0–8%, indicative that LSP keeps hydrogen from permeating into the metal. Similarly for the high strength steel, LSP treating limited the hardness changes from hydrogen to less than 5%. Mechanical U-bends subjected to Mattsson's solution, NaCl, and MgCl2 environments are analyzed, to determine changes in fracture morphology. LSP treating increased the time to failure by 65% for the stainless steel, and by 40% for the high strength steel. LSP treating of the brass showed no improvement in U-bend tests. Surface chemical effects are addressed via Kelvin Probe Force Microscopy, and a finite element model comparing induced stresses is developed. Detection of any deformation induced martensite phases, which may be detrimental, is performed using X-ray diffraction. We find LSP to be beneficial for stainless and high strength steels but does not improve brass's SCC resistance. With our analysis methods, we provide a description accounting for differences between the materials, and subsequently highlight important processing considerations for implementation of the process.
    • Download: (2.831Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Material Influence on Mitigation of Stress Corrosion Cracking Via Laser Shock Peening

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234649
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorBrandal, Grant
    contributor authorLawrence Yao, Y.
    date accessioned2017-11-25T07:17:33Z
    date available2017-11-25T07:17:33Z
    date copyright2016/8/8
    date issued2017
    identifier issn1087-1357
    identifier othermanu_139_01_011002.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234649
    description abstractStress corrosion cracking is a phenomenon that can lead to sudden failure of metallic components. Here, we use laser shock peening (LSP) as a surface treatment for mitigation of stress corrosion cracking (SCC), and explore how the material differences of 304 stainless steel, 4140 high strength steel, and 260 brass affect their mitigation. Cathodic charging of the samples in 1 M sulfuric acid was performed to accelerate hydrogen uptake. Nontreated stainless steel samples underwent hardness increases of 28%, but LSP treated samples only increased in the range of 0–8%, indicative that LSP keeps hydrogen from permeating into the metal. Similarly for the high strength steel, LSP treating limited the hardness changes from hydrogen to less than 5%. Mechanical U-bends subjected to Mattsson's solution, NaCl, and MgCl2 environments are analyzed, to determine changes in fracture morphology. LSP treating increased the time to failure by 65% for the stainless steel, and by 40% for the high strength steel. LSP treating of the brass showed no improvement in U-bend tests. Surface chemical effects are addressed via Kelvin Probe Force Microscopy, and a finite element model comparing induced stresses is developed. Detection of any deformation induced martensite phases, which may be detrimental, is performed using X-ray diffraction. We find LSP to be beneficial for stainless and high strength steels but does not improve brass's SCC resistance. With our analysis methods, we provide a description accounting for differences between the materials, and subsequently highlight important processing considerations for implementation of the process.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMaterial Influence on Mitigation of Stress Corrosion Cracking Via Laser Shock Peening
    typeJournal Paper
    journal volume139
    journal issue1
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4034283
    journal fristpage11002
    journal lastpage011002-10
    treeJournal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian