The Origin of Flank Wear in Turning Ti-6Al-4VSource: Journal of Manufacturing Science and Engineering:;2016:;volume( 138 ):;issue: 012::page 121013DOI: 10.1115/1.4034008Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Unlike ferrous materials, where the cementite (Fe3C) phase acts as an abrasive that contributes to flank wear on the cutting tool, most titanium (Ti) alloys possesses no significant hard phase. Thus, the origin of flank wear is unclear in machining Ti alloys. To address this question, a Ti-6Al-4V bar was turned under various conditions with uncoated carbide and polycrystalline diamond (PCD) inserts, most commonly used tool materials for machining Ti alloys. These inserts were retrieved sporadically while tuning to examine the wear patterns using a confocal microscope. To correlate the patterns with the microstructure of the original bar, the microstructure was carefully characterized using Orientation Image Microscopy™ (OIM) with electron-backscattered diffraction (EBSD). From the wear patterns, two distinct types of damage were identified: (a) microscopic and macroscopic fractures on the cutting edges and (b) scoring marks on flank faces. This paper demonstrates that both types of damage were caused primarily by the heterogeneity in hardness in the α-crystals, where the plane perpendicular to the c-axis in an α-crystal is substantially harder than any other direction in the α-crystal as well as the isotropic β-crystal. In addition to such heterogeneities, adhesion layer, ubiquitous to machining Ti alloys, detaches small fragments of the tool, which resulted in microscopic and macroscopic fractures observed on flank wear.
|
Collections
Show full item record
| contributor author | Nguyen, Trung | |
| contributor author | Kwon, Patrick | |
| contributor author | Kang, Di | |
| contributor author | Bieler, Thomas R. | |
| date accessioned | 2017-11-25T07:17:33Z | |
| date available | 2017-11-25T07:17:33Z | |
| date copyright | 2016/29/9 | |
| date issued | 2016 | |
| identifier issn | 1087-1357 | |
| identifier other | manu_138_12_121013.pdf | |
| identifier uri | http://138.201.223.254:8080/yetl1/handle/yetl/4234642 | |
| description abstract | Unlike ferrous materials, where the cementite (Fe3C) phase acts as an abrasive that contributes to flank wear on the cutting tool, most titanium (Ti) alloys possesses no significant hard phase. Thus, the origin of flank wear is unclear in machining Ti alloys. To address this question, a Ti-6Al-4V bar was turned under various conditions with uncoated carbide and polycrystalline diamond (PCD) inserts, most commonly used tool materials for machining Ti alloys. These inserts were retrieved sporadically while tuning to examine the wear patterns using a confocal microscope. To correlate the patterns with the microstructure of the original bar, the microstructure was carefully characterized using Orientation Image Microscopy™ (OIM) with electron-backscattered diffraction (EBSD). From the wear patterns, two distinct types of damage were identified: (a) microscopic and macroscopic fractures on the cutting edges and (b) scoring marks on flank faces. This paper demonstrates that both types of damage were caused primarily by the heterogeneity in hardness in the α-crystals, where the plane perpendicular to the c-axis in an α-crystal is substantially harder than any other direction in the α-crystal as well as the isotropic β-crystal. In addition to such heterogeneities, adhesion layer, ubiquitous to machining Ti alloys, detaches small fragments of the tool, which resulted in microscopic and macroscopic fractures observed on flank wear. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | The Origin of Flank Wear in Turning Ti-6Al-4V | |
| type | Journal Paper | |
| journal volume | 138 | |
| journal issue | 12 | |
| journal title | Journal of Manufacturing Science and Engineering | |
| identifier doi | 10.1115/1.4034008 | |
| journal fristpage | 121013 | |
| journal lastpage | 121013-12 | |
| tree | Journal of Manufacturing Science and Engineering:;2016:;volume( 138 ):;issue: 012 | |
| contenttype | Fulltext |