YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanistic Modeling of Five-Axis Machining With a Flat End Mill Considering Bottom Edge Cutting Effect

    Source: Journal of Manufacturing Science and Engineering:;2016:;volume( 138 ):;issue: 011::page 111012
    Author:
    Li, Zhou-Long
    ,
    Zhu, Li-Min
    DOI: 10.1115/1.4033663
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In five-axis milling, the bottom edge of a flat end mill is probably involved in cutting when the lead angle of tool axis changes to negative. The mechanistic model will lose accuracy if the bottom edge cutting effect is neglected. In this paper, an improved mechanistic model of five-axis machining with a flat end mill is presented to accurately predict cutting forces by combining the cutting effects of both side and bottom edges. Based on the kinematic analysis of the radial line located at the tool bottom part, the feasible contact radial line (FCRL) is analytically extracted. Then, boundaries of the bottom cutter-workpiece engagements (CWEs) are obtained by intersecting the FCRL with workpiece surfaces and identifying the inclusion relation of its endpoints with the workpiece volume. Next, an analytical method is proposed to calculate the cutting width and the chip area by considering five-axis motions of the tool. Finally, the method of calibrating bottom-cutting force coefficients by conducting a series of plunge milling tests at various feedrates is proposed, and the improved mechanistic model is then applied to predict cutting forces. The five-axis milling with a negative lead angle and the rough machining of an aircraft engine blisk are carried out to test the effectiveness and practicability of the proposed model. The results indicate that it is essential to take into account the bottom edge cutting effect for accurate prediction of cutting forces at tool path zones where the tool bottom part engages with the workpiece.
    • Download: (2.687Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanistic Modeling of Five-Axis Machining With a Flat End Mill Considering Bottom Edge Cutting Effect

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234625
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorLi, Zhou-Long
    contributor authorZhu, Li-Min
    date accessioned2017-11-25T07:17:31Z
    date available2017-11-25T07:17:31Z
    date copyright2016/24/6
    date issued2016
    identifier issn1087-1357
    identifier othermanu_138_11_111012.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234625
    description abstractIn five-axis milling, the bottom edge of a flat end mill is probably involved in cutting when the lead angle of tool axis changes to negative. The mechanistic model will lose accuracy if the bottom edge cutting effect is neglected. In this paper, an improved mechanistic model of five-axis machining with a flat end mill is presented to accurately predict cutting forces by combining the cutting effects of both side and bottom edges. Based on the kinematic analysis of the radial line located at the tool bottom part, the feasible contact radial line (FCRL) is analytically extracted. Then, boundaries of the bottom cutter-workpiece engagements (CWEs) are obtained by intersecting the FCRL with workpiece surfaces and identifying the inclusion relation of its endpoints with the workpiece volume. Next, an analytical method is proposed to calculate the cutting width and the chip area by considering five-axis motions of the tool. Finally, the method of calibrating bottom-cutting force coefficients by conducting a series of plunge milling tests at various feedrates is proposed, and the improved mechanistic model is then applied to predict cutting forces. The five-axis milling with a negative lead angle and the rough machining of an aircraft engine blisk are carried out to test the effectiveness and practicability of the proposed model. The results indicate that it is essential to take into account the bottom edge cutting effect for accurate prediction of cutting forces at tool path zones where the tool bottom part engages with the workpiece.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMechanistic Modeling of Five-Axis Machining With a Flat End Mill Considering Bottom Edge Cutting Effect
    typeJournal Paper
    journal volume138
    journal issue11
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4033663
    journal fristpage111012
    journal lastpage111012-11
    treeJournal of Manufacturing Science and Engineering:;2016:;volume( 138 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian