YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ecological Principles and Metrics for Improving Material Cycling Structures in Manufacturing Networks

    Source: Journal of Manufacturing Science and Engineering:;2016:;volume( 138 ):;issue: 010::page 101002
    Author:
    Layton, Astrid
    ,
    Bras, Bert
    ,
    Weissburg, Marc
    DOI: 10.1115/1.4033689
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A key element for achieving sustainable manufacturing systems is efficient and effective resource use. This potentially can be achieved by encouraging symbiotic thinking among multiple manufacturers and industrial actors and establish resource flow structures that are analogous to material flows in natural ecosystems. In this paper, ecological principles used by ecologists for understanding food web (FW) structures are discussed which can provide new insight for improving closed-loop manufacturing networks. Quantitative ecological metrics for measuring the performance of natural ecosystems are employed. Specifically, cyclicity, which is used by ecologists to measure the presence and strength of the internal cycling of materials and energy in a system, is discussed. To test applicability, groupings of symbiotic eco-industrial parks (EIP) were made in terms of the level of internal cycling in the network structure (high, medium, basic, and none) based on the metric cyclicity. None of the industrial systems analyzed matched the average values and amounts of cycling seen in biological ecosystems. Having detritus actors, i.e., active recyclers, is a key element for achieving more complex cycling behavior. Higher cyclicity values also correspond to higher amounts of indirect cycling and pathway proliferation rate, i.e., the rate that the number of paths increases as path length increases. In FWs, when significant cycling is present, indirect flows dominate direct flows. The application of these principles has the potential for novel insights in the context of closed-loop manufacturing systems and sustainable manufacturing.
    • Download: (1.670Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ecological Principles and Metrics for Improving Material Cycling Structures in Manufacturing Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234601
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorLayton, Astrid
    contributor authorBras, Bert
    contributor authorWeissburg, Marc
    date accessioned2017-11-25T07:17:29Z
    date available2017-11-25T07:17:29Z
    date copyright2016/22/6
    date issued2016
    identifier issn1087-1357
    identifier othermanu_138_10_101002.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234601
    description abstractA key element for achieving sustainable manufacturing systems is efficient and effective resource use. This potentially can be achieved by encouraging symbiotic thinking among multiple manufacturers and industrial actors and establish resource flow structures that are analogous to material flows in natural ecosystems. In this paper, ecological principles used by ecologists for understanding food web (FW) structures are discussed which can provide new insight for improving closed-loop manufacturing networks. Quantitative ecological metrics for measuring the performance of natural ecosystems are employed. Specifically, cyclicity, which is used by ecologists to measure the presence and strength of the internal cycling of materials and energy in a system, is discussed. To test applicability, groupings of symbiotic eco-industrial parks (EIP) were made in terms of the level of internal cycling in the network structure (high, medium, basic, and none) based on the metric cyclicity. None of the industrial systems analyzed matched the average values and amounts of cycling seen in biological ecosystems. Having detritus actors, i.e., active recyclers, is a key element for achieving more complex cycling behavior. Higher cyclicity values also correspond to higher amounts of indirect cycling and pathway proliferation rate, i.e., the rate that the number of paths increases as path length increases. In FWs, when significant cycling is present, indirect flows dominate direct flows. The application of these principles has the potential for novel insights in the context of closed-loop manufacturing systems and sustainable manufacturing.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEcological Principles and Metrics for Improving Material Cycling Structures in Manufacturing Networks
    typeJournal Paper
    journal volume138
    journal issue10
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4033689
    journal fristpage101002
    journal lastpage101002-12
    treeJournal of Manufacturing Science and Engineering:;2016:;volume( 138 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian