YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis of Cohesive Microsized Particle Packing Structure Using History-Dependent Contact Models

    Source: Journal of Manufacturing Science and Engineering:;2016:;volume( 138 ):;issue: 004::page 41005
    Author:
    Tayeb, Raihan
    ,
    Dou, Xin
    ,
    Mao, Yijin
    ,
    Zhang, Yuwen
    DOI: 10.1115/1.4031246
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Granular packing structures of cohesive microsized particles with different sizes and size distributions, including monosized, uniform, and Gaussian distribution, are investigated by using two different history dependent contact models with discrete element method (DEM). The simulation is carried out in the framework of liggghts, which is a DEM simulation package extended based on branch of granular package of widely used open-source code LAMMPS. Contact force caused by translation and rotation, frictional and damping forces due to collision with other particles or container boundaries, cohesive force, van der Waals force, and gravity is considered. The radial distribution functions (RDFs), force distributions, porosities, and coordination numbers under cohesive and noncohesive conditions are reported. The results indicate that particle size and size distributions have great influences on the packing density for particle packing under cohesive effect: particles with Gaussian distribution have the lowest packing density, followed by the particles with uniform distribution; the particles with monosized distribution have the highest packing density. It is also found that cohesive effect to the system does not significantly affect the coordination number that mainly depends on the particle size and size distribution. Although the magnitude of net force distribution is different, the results for porosity, coordination number, and mean value of magnitude of net force do not vary significantly between the two contact models.
    • Download: (4.627Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis of Cohesive Microsized Particle Packing Structure Using History-Dependent Contact Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234506
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorTayeb, Raihan
    contributor authorDou, Xin
    contributor authorMao, Yijin
    contributor authorZhang, Yuwen
    date accessioned2017-11-25T07:17:19Z
    date available2017-11-25T07:17:19Z
    date copyright2015/27/10
    date issued2016
    identifier issn1087-1357
    identifier othermanu_138_04_041005.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234506
    description abstractGranular packing structures of cohesive microsized particles with different sizes and size distributions, including monosized, uniform, and Gaussian distribution, are investigated by using two different history dependent contact models with discrete element method (DEM). The simulation is carried out in the framework of liggghts, which is a DEM simulation package extended based on branch of granular package of widely used open-source code LAMMPS. Contact force caused by translation and rotation, frictional and damping forces due to collision with other particles or container boundaries, cohesive force, van der Waals force, and gravity is considered. The radial distribution functions (RDFs), force distributions, porosities, and coordination numbers under cohesive and noncohesive conditions are reported. The results indicate that particle size and size distributions have great influences on the packing density for particle packing under cohesive effect: particles with Gaussian distribution have the lowest packing density, followed by the particles with uniform distribution; the particles with monosized distribution have the highest packing density. It is also found that cohesive effect to the system does not significantly affect the coordination number that mainly depends on the particle size and size distribution. Although the magnitude of net force distribution is different, the results for porosity, coordination number, and mean value of magnitude of net force do not vary significantly between the two contact models.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnalysis of Cohesive Microsized Particle Packing Structure Using History-Dependent Contact Models
    typeJournal Paper
    journal volume138
    journal issue4
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4031246
    journal fristpage41005
    journal lastpage041005-11
    treeJournal of Manufacturing Science and Engineering:;2016:;volume( 138 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian