YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Rolling at Small Scales

    Source: Journal of Manufacturing Science and Engineering:;2016:;volume( 138 ):;issue: 004::page 41004
    Author:
    Nielsen, Kim L.
    ,
    Niordson, Christian F.
    ,
    Hutchinson, John W.
    DOI: 10.1115/1.4031068
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The rolling process is widely used in the metal forming industry and has been so for many years. However, the process has attracted renewed interest as it recently has been adapted to very small scales where conventional plasticity theory cannot accurately predict the material response. It is well-established that gradient effects play a role at the micron scale, and the objective of this study is to demonstrate how strain gradient hardening affects the rolling process. Specifically, the paper addresses how the applied roll torque, roll forces, and the contact conditions are modified by strain gradient plasticity. Metals are known to be stronger when large strain gradients appear over a few microns; hence, the forces involved in the rolling process are expected to increase relatively at these smaller scales. In the present numerical analysis, a steady-state modeling technique that enables convergence without dealing with the transient response period is employed. This allows for a comprehensive parameter study. Coulomb friction, including a stick–slip condition, is used as a first approximation. It is found that length scale effects increase both the forces applied to the roll, the roll torque, and thus the power input to the process. The contact traction is also affected, particularly for sheet thicknesses on the order of 10 μm and below. The influences of the length parameter and the friction coefficient are emphasized, and the results are presented for multiple sheet reductions and roll sizes.
    • Download: (1.043Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Rolling at Small Scales

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234505
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorNielsen, Kim L.
    contributor authorNiordson, Christian F.
    contributor authorHutchinson, John W.
    date accessioned2017-11-25T07:17:19Z
    date available2017-11-25T07:17:19Z
    date copyright2015/27/10
    date issued2016
    identifier issn1087-1357
    identifier othermanu_138_04_041004.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234505
    description abstractThe rolling process is widely used in the metal forming industry and has been so for many years. However, the process has attracted renewed interest as it recently has been adapted to very small scales where conventional plasticity theory cannot accurately predict the material response. It is well-established that gradient effects play a role at the micron scale, and the objective of this study is to demonstrate how strain gradient hardening affects the rolling process. Specifically, the paper addresses how the applied roll torque, roll forces, and the contact conditions are modified by strain gradient plasticity. Metals are known to be stronger when large strain gradients appear over a few microns; hence, the forces involved in the rolling process are expected to increase relatively at these smaller scales. In the present numerical analysis, a steady-state modeling technique that enables convergence without dealing with the transient response period is employed. This allows for a comprehensive parameter study. Coulomb friction, including a stick–slip condition, is used as a first approximation. It is found that length scale effects increase both the forces applied to the roll, the roll torque, and thus the power input to the process. The contact traction is also affected, particularly for sheet thicknesses on the order of 10 μm and below. The influences of the length parameter and the friction coefficient are emphasized, and the results are presented for multiple sheet reductions and roll sizes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRolling at Small Scales
    typeJournal Paper
    journal volume138
    journal issue4
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4031068
    journal fristpage41004
    journal lastpage041004-10
    treeJournal of Manufacturing Science and Engineering:;2016:;volume( 138 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian