YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Re-examination of Chilton–Colburn Analogy for Variable Thermophysical Fluid Properties

    Source: Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 007::page 71701
    Author:
    Kumar, Rajan
    ,
    Mahulikar, Shripad P.
    DOI: 10.1115/1.4035855
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The Chilton–Colburn analogy is very helpful for evaluating the heat transfer in internal forced flows. The Chilton–Colburn analogy between the Chilton–Colburn j-factor for heat transfer, jH (St·Pr2/3) and the Fanning friction factor (cf) is popularly considered to hold when St·Pr2/3 equals to cf/2, for constant fluid properties. The physical fluid properties, namely, viscosity and thermal conductivity, are generally a function of temperature for microconvective water flow due to a quite steep temperature gradient. Therefore, in present investigation, the validity of Chilton–Colburn analogy between St·Pr2/3 and cf is re-examined for laminar microconvective flow with variable thermophysical fluid properties. It is observed that the Chilton–Colburn analogy is valid only for that portion of the flow regime, where St·Pr2/3 decreases with decreasing cf. The validity of Chilton–Colburn analogy is also verified by the inverse dependence of Reynolds number (Re) with cf. Two modified nondimensional parameters “ΠSμ and ΠSk” are emerged from the nondimensional form of 2D, steady-state, incompressible, pure continuum-based, laminar conservation of momentum and energy equations, respectively. These modified nondimensional parameters show the significance of variable fluid properties in momentum transport and energy transport. Additionally, the role of ΠSμ and ΠSk in flow friction is also investigated. The higher values of ΠSμ and ΠSk indicate the stronger influence on microconvection due to large variations in fluid properties.
    • Download: (1.524Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Re-examination of Chilton–Colburn Analogy for Variable Thermophysical Fluid Properties

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234456
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorKumar, Rajan
    contributor authorMahulikar, Shripad P.
    date accessioned2017-11-25T07:17:13Z
    date available2017-11-25T07:17:13Z
    date copyright2017/21/3
    date issued2017
    identifier issn0022-1481
    identifier otherht_139_07_071701.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234456
    description abstractThe Chilton–Colburn analogy is very helpful for evaluating the heat transfer in internal forced flows. The Chilton–Colburn analogy between the Chilton–Colburn j-factor for heat transfer, jH (St·Pr2/3) and the Fanning friction factor (cf) is popularly considered to hold when St·Pr2/3 equals to cf/2, for constant fluid properties. The physical fluid properties, namely, viscosity and thermal conductivity, are generally a function of temperature for microconvective water flow due to a quite steep temperature gradient. Therefore, in present investigation, the validity of Chilton–Colburn analogy between St·Pr2/3 and cf is re-examined for laminar microconvective flow with variable thermophysical fluid properties. It is observed that the Chilton–Colburn analogy is valid only for that portion of the flow regime, where St·Pr2/3 decreases with decreasing cf. The validity of Chilton–Colburn analogy is also verified by the inverse dependence of Reynolds number (Re) with cf. Two modified nondimensional parameters “ΠSμ and ΠSk” are emerged from the nondimensional form of 2D, steady-state, incompressible, pure continuum-based, laminar conservation of momentum and energy equations, respectively. These modified nondimensional parameters show the significance of variable fluid properties in momentum transport and energy transport. Additionally, the role of ΠSμ and ΠSk in flow friction is also investigated. The higher values of ΠSμ and ΠSk indicate the stronger influence on microconvection due to large variations in fluid properties.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Re-examination of Chilton–Colburn Analogy for Variable Thermophysical Fluid Properties
    typeJournal Paper
    journal volume139
    journal issue7
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4035855
    journal fristpage71701
    journal lastpage071701-10
    treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian