YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation on Heat Transfer Performance of a Flat Plate Heat Pipe With MWCNTS-Acetone Nanofluid

    Source: Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 006::page 62001
    Author:
    Hao, Xiaohong
    ,
    Peng, Bei
    ,
    Chen, Yi
    ,
    Xie, Gongnan
    DOI: 10.1115/1.4035446
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper experimentally investigates how different mass concentration and aspect ratio multiwall carbon nanotubes (MWCNTs) acetone nanofluid affects the heat transfer performance of a flat plate heat pipe (FPHP). Different mass concentration and aspect ratio MWCNTs-acetone nanofluids are prepared without any surfactants or additives using the two-step method. Aspect ratios of MWCNTs are 666 (M1) and 200 (M2), respectively, and their according mass concentrations are 0.002, 0.005, 0.01, and 0.015 wt. %, respectively. The thermal resistance and wall temperature of the FPHP are experimentally obtained when the above-mentioned nanofluids are used as working fluid. The results showed that different mass concentration affects the heat transfer performance, therefore, there is an optimal MWCNTs-acetone nanofluid mass concentration (about 0.005wt. %). Also, the results showed that the thermal resistances of the FPHP with M1-acetone nanofluid (0.005 wt. %) and M2-acetone nanofluid (0.005 wt. %) are reduced 40% and 16%, respectively. Based on the above experimental phenomenon, this paper discusses the reasons for enhancement and decrement of heat transfer performance of the different mass concentration. For the M1-acetone nanofluid, the investigated FPHP has a thermal resistance of 0.26 °C/W and effective thermal conductivity 3212 W/m k at a heat input of 160 W. For the M2-acetone nanofluid, the investigated FPHP has a thermal resistance of 0.33 °C/W and effective thermal conductivity 2556 W/m k at a heat input of 150 W. The nanofluid FPHP investigated here provides a new approach in designing a high efficient next generation heat pipe cooling devices.
    • Download: (2.510Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation on Heat Transfer Performance of a Flat Plate Heat Pipe With MWCNTS-Acetone Nanofluid

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234443
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorHao, Xiaohong
    contributor authorPeng, Bei
    contributor authorChen, Yi
    contributor authorXie, Gongnan
    date accessioned2017-11-25T07:17:12Z
    date available2017-11-25T07:17:12Z
    date copyright2017/28/2
    date issued2017
    identifier issn0022-1481
    identifier otherht_139_06_062001.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234443
    description abstractThis paper experimentally investigates how different mass concentration and aspect ratio multiwall carbon nanotubes (MWCNTs) acetone nanofluid affects the heat transfer performance of a flat plate heat pipe (FPHP). Different mass concentration and aspect ratio MWCNTs-acetone nanofluids are prepared without any surfactants or additives using the two-step method. Aspect ratios of MWCNTs are 666 (M1) and 200 (M2), respectively, and their according mass concentrations are 0.002, 0.005, 0.01, and 0.015 wt. %, respectively. The thermal resistance and wall temperature of the FPHP are experimentally obtained when the above-mentioned nanofluids are used as working fluid. The results showed that different mass concentration affects the heat transfer performance, therefore, there is an optimal MWCNTs-acetone nanofluid mass concentration (about 0.005wt. %). Also, the results showed that the thermal resistances of the FPHP with M1-acetone nanofluid (0.005 wt. %) and M2-acetone nanofluid (0.005 wt. %) are reduced 40% and 16%, respectively. Based on the above experimental phenomenon, this paper discusses the reasons for enhancement and decrement of heat transfer performance of the different mass concentration. For the M1-acetone nanofluid, the investigated FPHP has a thermal resistance of 0.26 °C/W and effective thermal conductivity 3212 W/m k at a heat input of 160 W. For the M2-acetone nanofluid, the investigated FPHP has a thermal resistance of 0.33 °C/W and effective thermal conductivity 2556 W/m k at a heat input of 150 W. The nanofluid FPHP investigated here provides a new approach in designing a high efficient next generation heat pipe cooling devices.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Investigation on Heat Transfer Performance of a Flat Plate Heat Pipe With MWCNTS-Acetone Nanofluid
    typeJournal Paper
    journal volume139
    journal issue6
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4035446
    journal fristpage62001
    journal lastpage062001-8
    treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian