YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Treatment Efficacy for Validating MicroCT-Based Theoretical Simulation Approach in Magnetic Nanoparticle Hyperthermia for Cancer Treatment

    Source: Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 005::page 51101
    Author:
    LeBrun, Alexander
    ,
    Joglekar, Tejashree
    ,
    Bieberich, Charles
    ,
    Ma, Ronghui
    ,
    Zhu, Liang
    DOI: 10.1115/1.4035246
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The objective is to validate a designed heating protocol in a previous study based on treatment efficacy of magnetic nanoparticle hyperthermia in prostate tumors. In vivo experiments have been performed to induce temperature elevations in implanted PC3 tumors injected with magnetic nanoparticles, following the same heating protocol designed in our previous microCT-based theoretical simulation. A tumor shrinkage study and histological analyses of tumor cell death are conducted after the heating. Tumor shrinkage is observed over a long period of 8 weeks. Histological analyses of the tumors after heating are used to evaluate whether irreversible thermal damage occurs in the entire tumor region. It has been shown that the designed 25 min heating (Arrhenius integral Ω ≥ 4 in the entire tumor) on tumor tissue is effective to cause irreversible thermal damage to PC3 tumors, while reducing the heating time to 12 min (Ω ≥ 1 in the entire tumor) results in an initial shrinkage, however, later tumor recurrence. The treated tumors with 25 min of heating disappear after only a few days. On the other hand, the tumors in the control group without heating show approximately an increase of more than 700% in volume over the 8-week observation period. In the undertreated group with 12 min of heating, its growth rate is smaller than that in the control group. In addition, results of the histological analysis suggest vast regions of apoptotic and necrotic cells, consistent with the regions of significant temperature elevations. In conclusion, this study demonstrates the importance of imaging-based design for individualized treatment planning. The success of the designed heating protocol for completely damaging PC3 tumors validates the theoretical models used in planning heating treatment in magnetic nanoparticle hyperthermia.
    • Download: (3.590Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Treatment Efficacy for Validating MicroCT-Based Theoretical Simulation Approach in Magnetic Nanoparticle Hyperthermia for Cancer Treatment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234409
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorLeBrun, Alexander
    contributor authorJoglekar, Tejashree
    contributor authorBieberich, Charles
    contributor authorMa, Ronghui
    contributor authorZhu, Liang
    date accessioned2017-11-25T07:17:07Z
    date available2017-11-25T07:17:07Z
    date copyright2017/7/2
    date issued2017
    identifier issn0022-1481
    identifier otherht_139_05_051101.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234409
    description abstractThe objective is to validate a designed heating protocol in a previous study based on treatment efficacy of magnetic nanoparticle hyperthermia in prostate tumors. In vivo experiments have been performed to induce temperature elevations in implanted PC3 tumors injected with magnetic nanoparticles, following the same heating protocol designed in our previous microCT-based theoretical simulation. A tumor shrinkage study and histological analyses of tumor cell death are conducted after the heating. Tumor shrinkage is observed over a long period of 8 weeks. Histological analyses of the tumors after heating are used to evaluate whether irreversible thermal damage occurs in the entire tumor region. It has been shown that the designed 25 min heating (Arrhenius integral Ω ≥ 4 in the entire tumor) on tumor tissue is effective to cause irreversible thermal damage to PC3 tumors, while reducing the heating time to 12 min (Ω ≥ 1 in the entire tumor) results in an initial shrinkage, however, later tumor recurrence. The treated tumors with 25 min of heating disappear after only a few days. On the other hand, the tumors in the control group without heating show approximately an increase of more than 700% in volume over the 8-week observation period. In the undertreated group with 12 min of heating, its growth rate is smaller than that in the control group. In addition, results of the histological analysis suggest vast regions of apoptotic and necrotic cells, consistent with the regions of significant temperature elevations. In conclusion, this study demonstrates the importance of imaging-based design for individualized treatment planning. The success of the designed heating protocol for completely damaging PC3 tumors validates the theoretical models used in planning heating treatment in magnetic nanoparticle hyperthermia.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTreatment Efficacy for Validating MicroCT-Based Theoretical Simulation Approach in Magnetic Nanoparticle Hyperthermia for Cancer Treatment
    typeJournal Paper
    journal volume139
    journal issue5
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4035246
    journal fristpage51101
    journal lastpage051101-7
    treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian