YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Efficient Numerical Evaluation of Exact Solutions for One-Dimensional and Two-Dimensional Infinite Cylindrical Heat Conduction Problems

    Source: Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 012::page 121301
    Author:
    Pi, Te
    ,
    Cole, Kevin
    ,
    Beck, James
    DOI: 10.1115/1.4037081
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Estimation of thermal properties or diffusion properties from transient data requires that a model is available that is physically meaningful and suitably precise. The model must also produce numerical values rapidly enough to accommodate iterative regression, inverse methods, or other estimation procedures during which the model is evaluated again and again. Bodies of infinite extent are a particular challenge from this perspective. Even for exact analytical solutions, because the solution often has the form of an improper integral that must be evaluated numerically, lengthy computer-evaluation time is a challenge. The subject of this paper is improving the computer evaluation time for exact solutions for infinite and semi-infinite bodies in the cylindrical coordinate system. The motivating applications for the present work include the line-source method for obtaining thermal properties, the estimation of thermal properties by the laser-flash method, and the estimation of aquifer properties or petroleum-field properties from well-test measurements. In this paper, the computer evaluation time is improved by replacing the integral-containing solution by a suitable finite-body series solution. The precision of the series solution may be controlled to a high level and the required computer time may be minimized, by a suitable choice of the extent of the finite body. The key finding of this paper is that the resulting series may be accurately evaluated with a fixed number of terms at any value of time, which removes a long-standing difficulty with series solution in general. The method is demonstrated for the one-dimensional case of a large body with a cylindrical hole and is extended to two-dimensional geometries of practical interest. The computer-evaluation time for the finite-body solutions are shown to be hundreds or thousands of time faster than the infinite-body solutions, depending on the geometry.
    • Download: (640.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Efficient Numerical Evaluation of Exact Solutions for One-Dimensional and Two-Dimensional Infinite Cylindrical Heat Conduction Problems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234370
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorPi, Te
    contributor authorCole, Kevin
    contributor authorBeck, James
    date accessioned2017-11-25T07:17:02Z
    date available2017-11-25T07:17:02Z
    date copyright2017/25/7
    date issued2017
    identifier issn0022-1481
    identifier otherht_139_12_121301.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234370
    description abstractEstimation of thermal properties or diffusion properties from transient data requires that a model is available that is physically meaningful and suitably precise. The model must also produce numerical values rapidly enough to accommodate iterative regression, inverse methods, or other estimation procedures during which the model is evaluated again and again. Bodies of infinite extent are a particular challenge from this perspective. Even for exact analytical solutions, because the solution often has the form of an improper integral that must be evaluated numerically, lengthy computer-evaluation time is a challenge. The subject of this paper is improving the computer evaluation time for exact solutions for infinite and semi-infinite bodies in the cylindrical coordinate system. The motivating applications for the present work include the line-source method for obtaining thermal properties, the estimation of thermal properties by the laser-flash method, and the estimation of aquifer properties or petroleum-field properties from well-test measurements. In this paper, the computer evaluation time is improved by replacing the integral-containing solution by a suitable finite-body series solution. The precision of the series solution may be controlled to a high level and the required computer time may be minimized, by a suitable choice of the extent of the finite body. The key finding of this paper is that the resulting series may be accurately evaluated with a fixed number of terms at any value of time, which removes a long-standing difficulty with series solution in general. The method is demonstrated for the one-dimensional case of a large body with a cylindrical hole and is extended to two-dimensional geometries of practical interest. The computer-evaluation time for the finite-body solutions are shown to be hundreds or thousands of time faster than the infinite-body solutions, depending on the geometry.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEfficient Numerical Evaluation of Exact Solutions for One-Dimensional and Two-Dimensional Infinite Cylindrical Heat Conduction Problems
    typeJournal Paper
    journal volume139
    journal issue12
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4037081
    journal fristpage121301
    journal lastpage121301-10
    treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian