YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of the Volume of Fluid and CLSVOF Methods for the Assessment of Flow Boiling in Silicon Microgaps

    Source: Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 011::page 111506
    Author:
    Lorenzini, Daniel
    ,
    Joshi, Yogendra
    DOI: 10.1115/1.4036682
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The three-dimensional (3D) stacking of integrated circuits (ICs), and emergent microelectronic technologies require low-profile cooling solutions for the removal of relatively high heat fluxes. The flow boiling of dielectric refrigerants represents a feasible alternative to such applications by providing compatibility with the electrical interconnections, relatively uniform temperature profiles, and higher heat transfer coefficients than those obtained with single phase-cooling. Despite important experimental evidence in this area has been recently reported in the literature, the modeling of such has remained in basic and limited forms due to the associated complexities with the physics of two-phase flow with phase-change. In an effort to expand the studied possibilities for the modeling of flow boiling, the present investigation compares two different phase-tracking methods for the analysis of such phenomena: the volume of fluid (VOF) and the coupled level set—volume of fluid (CLSVOF) techniques. These interface tracking and reconstruction techniques are coupled with a phase change model that accounts for the mass and energy transfer source terms to the governing equations. The geometric domain is constituted by a silicon microgap 175 μm high with a substrate thickness of 50 μm, and populated with circular pin fins of 150 μm diameter, where the heat conduction is simultaneously solved with temperature dependent properties. The flow boiling regimes and their spatial and temporal evolution are compared between both methods by maintaining the operating conditions. Results indicate that both methods provide a good capability to predict major two-phase flow regimes observed in experimental studies with these types of arrangements. However, the CLSVOF offers a sharper interface reconstruction than the standard VOF method by predicting bubble nucleation and departure mechanisms more closely to experimental observations.
    • Download: (3.899Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of the Volume of Fluid and CLSVOF Methods for the Assessment of Flow Boiling in Silicon Microgaps

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234359
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorLorenzini, Daniel
    contributor authorJoshi, Yogendra
    date accessioned2017-11-25T07:17:01Z
    date available2017-11-25T07:17:01Z
    date copyright2017/21/6
    date issued2017
    identifier issn0022-1481
    identifier otherht_139_11_111506.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234359
    description abstractThe three-dimensional (3D) stacking of integrated circuits (ICs), and emergent microelectronic technologies require low-profile cooling solutions for the removal of relatively high heat fluxes. The flow boiling of dielectric refrigerants represents a feasible alternative to such applications by providing compatibility with the electrical interconnections, relatively uniform temperature profiles, and higher heat transfer coefficients than those obtained with single phase-cooling. Despite important experimental evidence in this area has been recently reported in the literature, the modeling of such has remained in basic and limited forms due to the associated complexities with the physics of two-phase flow with phase-change. In an effort to expand the studied possibilities for the modeling of flow boiling, the present investigation compares two different phase-tracking methods for the analysis of such phenomena: the volume of fluid (VOF) and the coupled level set—volume of fluid (CLSVOF) techniques. These interface tracking and reconstruction techniques are coupled with a phase change model that accounts for the mass and energy transfer source terms to the governing equations. The geometric domain is constituted by a silicon microgap 175 μm high with a substrate thickness of 50 μm, and populated with circular pin fins of 150 μm diameter, where the heat conduction is simultaneously solved with temperature dependent properties. The flow boiling regimes and their spatial and temporal evolution are compared between both methods by maintaining the operating conditions. Results indicate that both methods provide a good capability to predict major two-phase flow regimes observed in experimental studies with these types of arrangements. However, the CLSVOF offers a sharper interface reconstruction than the standard VOF method by predicting bubble nucleation and departure mechanisms more closely to experimental observations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComparison of the Volume of Fluid and CLSVOF Methods for the Assessment of Flow Boiling in Silicon Microgaps
    typeJournal Paper
    journal volume139
    journal issue11
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4036682
    journal fristpage111506
    journal lastpage111506-10
    treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian