YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Boiling Performance of Graphene Oxide Coated Copper Surfaces at High Pressures

    Source: Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 011::page 111504
    Author:
    Li, Nanxi
    ,
    Rachel Betz, Amy
    DOI: 10.1115/1.4036678
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Graphene has been investigated due to its mechanical, optical, and electrical properties. Graphene's effect on the heat transfer coefficient (HTC) and critical heat flux (CHF) in boiling applications has also been studied because of its unique structure and properties. Methods for coating graphene oxide (GO) now include spin, spray, and dip coating. In this work, graphene oxide coatings are spray coated on to a copper surface to investigate the effect of pressure on pool boiling performance. For example, at a heat flux of 30 W/cm2, the HTC increase of the GO-coated surface was 126.8% at atmospheric pressure and 51.5% at 45 psig (308 kPa). For both surfaces, the HTC increases with increasing pressure. However, the rate of increase is not the same for both surfaces. Observations of bubble departure showed that bubbles departing from the graphene oxide surface were significantly smaller than that of the copper surface even though the contact angle was similar. The change in bubble departure diameter is due to pinning from micro- and nanostructures in the graphene oxide coating or nonhomogeneous wettability. Condensation experiments at 40% relative humidity on both the plain copper surface and the graphene oxide coated surface show that water droplets forming on both surfaces are significantly different in size and shape despite the similar contact angle of the two surfaces.
    • Download: (1.948Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Boiling Performance of Graphene Oxide Coated Copper Surfaces at High Pressures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234357
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorLi, Nanxi
    contributor authorRachel Betz, Amy
    date accessioned2017-11-25T07:17:01Z
    date available2017-11-25T07:17:01Z
    date copyright2017/21/6
    date issued2017
    identifier issn0022-1481
    identifier otherht_139_11_111504.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234357
    description abstractGraphene has been investigated due to its mechanical, optical, and electrical properties. Graphene's effect on the heat transfer coefficient (HTC) and critical heat flux (CHF) in boiling applications has also been studied because of its unique structure and properties. Methods for coating graphene oxide (GO) now include spin, spray, and dip coating. In this work, graphene oxide coatings are spray coated on to a copper surface to investigate the effect of pressure on pool boiling performance. For example, at a heat flux of 30 W/cm2, the HTC increase of the GO-coated surface was 126.8% at atmospheric pressure and 51.5% at 45 psig (308 kPa). For both surfaces, the HTC increases with increasing pressure. However, the rate of increase is not the same for both surfaces. Observations of bubble departure showed that bubbles departing from the graphene oxide surface were significantly smaller than that of the copper surface even though the contact angle was similar. The change in bubble departure diameter is due to pinning from micro- and nanostructures in the graphene oxide coating or nonhomogeneous wettability. Condensation experiments at 40% relative humidity on both the plain copper surface and the graphene oxide coated surface show that water droplets forming on both surfaces are significantly different in size and shape despite the similar contact angle of the two surfaces.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBoiling Performance of Graphene Oxide Coated Copper Surfaces at High Pressures
    typeJournal Paper
    journal volume139
    journal issue11
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4036678
    journal fristpage111504
    journal lastpage111504-6
    treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian