YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Thermophysical Properties of the Heater Substrate on Critical Heat Flux in Pool Boiling

    Source: Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 011::page 111502
    Author:
    Raghupathi, Pruthvik A.
    ,
    Kandlikar, Satish G.
    DOI: 10.1115/1.4036653
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: While the role of the liquid properties, surface morphology, and operating conditions on critical heat flux (CHF) in pool boiling is well investigated, the effect of the properties of the heater material is not well understood. Previous studies indicate that the heater thickness plays an important role on the CHF phenomenon. However, beyond a certain thickness, called the asymptotic thickness, the local temperature fluctuations on the heater surface caused by the periodic bubble ebullition cycle are evened out, and the CHF is not influenced by further increasing the thickness. In the present work, data from literature and pool boiling experiments conducted in this study with seven substrates—aluminum, brass, copper, carbon steel, Monel 400, silver, and silicon—are used to determine the effect of the thermophysical property of the material on CHF for thick heaters that are used in industrial pool boiling applications. The results indicate that the product of density (ρ) and specific heat (cp) represents an important substrate property group that affects the CHF, and that the thermal conductivity is not an important parameter. A well-established force-balance-based CHF model (Kandlikar model) is modified to account for the thermal properties of the substrate. The predicted CHF values are within 15% of the experimental results.
    • Download: (769.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Thermophysical Properties of the Heater Substrate on Critical Heat Flux in Pool Boiling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234355
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorRaghupathi, Pruthvik A.
    contributor authorKandlikar, Satish G.
    date accessioned2017-11-25T07:17:01Z
    date available2017-11-25T07:17:01Z
    date copyright2017/21/6
    date issued2017
    identifier issn0022-1481
    identifier otherht_139_11_111502.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234355
    description abstractWhile the role of the liquid properties, surface morphology, and operating conditions on critical heat flux (CHF) in pool boiling is well investigated, the effect of the properties of the heater material is not well understood. Previous studies indicate that the heater thickness plays an important role on the CHF phenomenon. However, beyond a certain thickness, called the asymptotic thickness, the local temperature fluctuations on the heater surface caused by the periodic bubble ebullition cycle are evened out, and the CHF is not influenced by further increasing the thickness. In the present work, data from literature and pool boiling experiments conducted in this study with seven substrates—aluminum, brass, copper, carbon steel, Monel 400, silver, and silicon—are used to determine the effect of the thermophysical property of the material on CHF for thick heaters that are used in industrial pool boiling applications. The results indicate that the product of density (ρ) and specific heat (cp) represents an important substrate property group that affects the CHF, and that the thermal conductivity is not an important parameter. A well-established force-balance-based CHF model (Kandlikar model) is modified to account for the thermal properties of the substrate. The predicted CHF values are within 15% of the experimental results.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Thermophysical Properties of the Heater Substrate on Critical Heat Flux in Pool Boiling
    typeJournal Paper
    journal volume139
    journal issue11
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4036653
    journal fristpage111502
    journal lastpage111502-7
    treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian