YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulation of Evaporating Two-Phase Flow in a High-Aspect-Ratio Microchannel with Bends

    Source: Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 008::page 80904
    Author:
    Girard, Adam
    ,
    M. You, Seung
    ,
    Garimella, Suresh V.
    DOI: 10.1115/1.4036879
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Flow boiling was investigated on a hydrophobic surface by coating Teflon® onto a 1×1 cm2 copper surface, resulting in contact angle of 118°. The images depicted were taken using distilled water flowing at 299 kg/m2s with 3°C subcooling. In the first series, the number of active nucleation sites increased as heat flux increased. For lower values of heat flux (< 80 kW/m2), vapor bubbles remained almost stationary on the surface. The hydrophobic contact angle makes the horizontal component of surface tension force act radially outward, causing the bubble interface to grow. This leads to increased triple contact line and increased vertical component surface force. The buoyancy force due to the vapor bubble volume appears to be insufficient to overcome this vertical force for liftoff. This explains the stationary bubbles observed at the lower heat fluxes. The bubbles show an increase in size and number with heat flux. After this increasing trend, the bubble continues to grow larger when heat flux is higher than 80 kW/m2, eventually leading to the dryout at 117.5 kW/m2. The later bubble growth at high heat fluxes is caused primarily by the coalescences of neighboring bubbles. These larger bubbles are more affected by flow induced drag forces and move downstream. This can be seen in the lower sequential series at 100 kW/m2. The larger vapor masses slide across the surface, continue to absorb smaller bubbles as they move downstream, and are swept off the surface.
    • Download: (3.957Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulation of Evaporating Two-Phase Flow in a High-Aspect-Ratio Microchannel with Bends

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234288
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorGirard, Adam
    contributor authorM. You, Seung
    contributor authorGarimella, Suresh V.
    date accessioned2017-11-25T07:16:54Z
    date available2017-11-25T07:16:54Z
    date copyright2017/5/6
    date issued2017
    identifier issn0022-1481
    identifier otherht_139_08_080904.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234288
    description abstractFlow boiling was investigated on a hydrophobic surface by coating Teflon® onto a 1×1 cm2 copper surface, resulting in contact angle of 118°. The images depicted were taken using distilled water flowing at 299 kg/m2s with 3°C subcooling. In the first series, the number of active nucleation sites increased as heat flux increased. For lower values of heat flux (< 80 kW/m2), vapor bubbles remained almost stationary on the surface. The hydrophobic contact angle makes the horizontal component of surface tension force act radially outward, causing the bubble interface to grow. This leads to increased triple contact line and increased vertical component surface force. The buoyancy force due to the vapor bubble volume appears to be insufficient to overcome this vertical force for liftoff. This explains the stationary bubbles observed at the lower heat fluxes. The bubbles show an increase in size and number with heat flux. After this increasing trend, the bubble continues to grow larger when heat flux is higher than 80 kW/m2, eventually leading to the dryout at 117.5 kW/m2. The later bubble growth at high heat fluxes is caused primarily by the coalescences of neighboring bubbles. These larger bubbles are more affected by flow induced drag forces and move downstream. This can be seen in the lower sequential series at 100 kW/m2. The larger vapor masses slide across the surface, continue to absorb smaller bubbles as they move downstream, and are swept off the surface.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Simulation of Evaporating Two-Phase Flow in a High-Aspect-Ratio Microchannel with Bends
    typeJournal Paper
    journal volume139
    journal issue8
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4036879
    journal fristpage80904
    journal lastpage080904-6
    treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian