YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Electron Mobility across Grain Boundaries in Graphene Synthesized using Chemical Vapor Deposition Process

    Source: Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 008::page 80901
    Author:
    Long, Fei
    ,
    Kyoung Choi, Chang
    DOI: 10.1115/1.4036875
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Chemical vapor deposition (CVD) is currently the only method for large-scale synthesis of graphene. However, the CVD process introduces grain boundaries (GBs) when individual grains coalesce with various mismatch angles. These GBs contain atomic dislocations and defects, which are believed to alter graphene's mechanical, electrical, and thermal properties. Specifically, the GBs can act as “potential barriers” when charges move from one grain to neighboring grains. This barrier effect will not only change the electrical conductivity but also the thermal conductivity of graphene. Besides high-resolution, 3-dimensional topography images, Atomic force microscopy (AFM) can also obtain the electrical properties at the nanoscale. In this report, the potential barrier effect of graphene GBs is studied with AFM. During the experiment, the probe is brought into contact with the graphene while positively (or negatively) biased. This process injects net charges into the graphene. The electrostatic potential across the GBs can be measured by AFM as an indication of the potential barrier effect. GBs with lower potential difference correspond to lower potential barrier, and vice versa. The dependency of the barrier effect on the mismatch angles was also measured. Considering the 6 folds’ symmetry of graphene atomic lattice, the mismatch angle is in the range of 0° ∼ 30°, with 30° the maximum mismatch angle. Our results can be well fitted with a sinusoidal function with π/3 period, which supports our hypothesis that higher mismatch angle contains higher density of dislocations and defects that increase the potential barrier of GBs.
    • Download: (2.783Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Electron Mobility across Grain Boundaries in Graphene Synthesized using Chemical Vapor Deposition Process

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234284
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorLong, Fei
    contributor authorKyoung Choi, Chang
    date accessioned2017-11-25T07:16:54Z
    date available2017-11-25T07:16:54Z
    date copyright2017/5/6
    date issued2017
    identifier issn0022-1481
    identifier otherht_139_08_080901.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234284
    description abstractChemical vapor deposition (CVD) is currently the only method for large-scale synthesis of graphene. However, the CVD process introduces grain boundaries (GBs) when individual grains coalesce with various mismatch angles. These GBs contain atomic dislocations and defects, which are believed to alter graphene's mechanical, electrical, and thermal properties. Specifically, the GBs can act as “potential barriers” when charges move from one grain to neighboring grains. This barrier effect will not only change the electrical conductivity but also the thermal conductivity of graphene. Besides high-resolution, 3-dimensional topography images, Atomic force microscopy (AFM) can also obtain the electrical properties at the nanoscale. In this report, the potential barrier effect of graphene GBs is studied with AFM. During the experiment, the probe is brought into contact with the graphene while positively (or negatively) biased. This process injects net charges into the graphene. The electrostatic potential across the GBs can be measured by AFM as an indication of the potential barrier effect. GBs with lower potential difference correspond to lower potential barrier, and vice versa. The dependency of the barrier effect on the mismatch angles was also measured. Considering the 6 folds’ symmetry of graphene atomic lattice, the mismatch angle is in the range of 0° ∼ 30°, with 30° the maximum mismatch angle. Our results can be well fitted with a sinusoidal function with π/3 period, which supports our hypothesis that higher mismatch angle contains higher density of dislocations and defects that increase the potential barrier of GBs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleElectron Mobility across Grain Boundaries in Graphene Synthesized using Chemical Vapor Deposition Process
    typeJournal Paper
    journal volume139
    journal issue8
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4036875
    journal fristpage80901
    journal lastpage080901-6
    treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian