YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Physical and Sorption Properties of Desiccant Coating on Performance of Energy Wheels

    Source: Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 006::page 62601
    Author:
    Fathieh, Farhad
    ,
    Nezakat, Majid
    ,
    Evitts, Richard W.
    ,
    Simonson, Carey J.
    DOI: 10.1115/1.4035650
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Desiccant-coated energy wheels are rotary-air-to-air energy exchangers widely used in ventilation systems to reduce the energy consumption required in industrial environments and commercial buildings. In this study, the effects of silica gel microphysical properties, i.e., pore width (Pw), specific surface area (SA), and particle size (dp), on the moisture recovery efficiency (latent effectiveness) of energy wheels are investigated. Three silica gel samples with different particle size and pore width (55 μm–77 Å, 150 μm–63 Å, and 160 μm–115 Å) are selected to coat small-scale energy exchangers. The sorption performance of the exchangers is determined from their normalized humidity response to a step increase in the inlet humidity at different flow rates. The results demonstrate that the transient humidity response is mainly specified by the desiccant pore size distribution, specific surface area, and mass of the coating. The transient analytical model is used to calculate the latent effectiveness (ɛL) of the exchangers from the transient humidity response. It was found that the exchanger coated with the smallest pore width (63 Å) has the highest available surface area and the highest latent effectiveness. With almost the same particle size (dp = 150 μm and 160 μm), the latent effectiveness increases by 5% (at wheel speed 20 rpm and Re = 174) as the pore width reduces from 150 Å to 63 Å. Increasing the particle size from 55 μm to 150 μm with almost the identical pore width (Pw = 63 Å and 77 Å) results in a slight enhancement in the latent effectiveness. ɛL is also calculated for correlated data (Yoon–Nelson model) where the results agree within experimental uncertainty bounds.
    • Download: (3.680Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Physical and Sorption Properties of Desiccant Coating on Performance of Energy Wheels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234255
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorFathieh, Farhad
    contributor authorNezakat, Majid
    contributor authorEvitts, Richard W.
    contributor authorSimonson, Carey J.
    date accessioned2017-11-25T07:16:52Z
    date available2017-11-25T07:16:52Z
    date copyright2017/28/2
    date issued2017
    identifier issn0022-1481
    identifier otherht_139_06_062601.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234255
    description abstractDesiccant-coated energy wheels are rotary-air-to-air energy exchangers widely used in ventilation systems to reduce the energy consumption required in industrial environments and commercial buildings. In this study, the effects of silica gel microphysical properties, i.e., pore width (Pw), specific surface area (SA), and particle size (dp), on the moisture recovery efficiency (latent effectiveness) of energy wheels are investigated. Three silica gel samples with different particle size and pore width (55 μm–77 Å, 150 μm–63 Å, and 160 μm–115 Å) are selected to coat small-scale energy exchangers. The sorption performance of the exchangers is determined from their normalized humidity response to a step increase in the inlet humidity at different flow rates. The results demonstrate that the transient humidity response is mainly specified by the desiccant pore size distribution, specific surface area, and mass of the coating. The transient analytical model is used to calculate the latent effectiveness (ɛL) of the exchangers from the transient humidity response. It was found that the exchanger coated with the smallest pore width (63 Å) has the highest available surface area and the highest latent effectiveness. With almost the same particle size (dp = 150 μm and 160 μm), the latent effectiveness increases by 5% (at wheel speed 20 rpm and Re = 174) as the pore width reduces from 150 Å to 63 Å. Increasing the particle size from 55 μm to 150 μm with almost the identical pore width (Pw = 63 Å and 77 Å) results in a slight enhancement in the latent effectiveness. ɛL is also calculated for correlated data (Yoon–Nelson model) where the results agree within experimental uncertainty bounds.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffects of Physical and Sorption Properties of Desiccant Coating on Performance of Energy Wheels
    typeJournal Paper
    journal volume139
    journal issue6
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4035650
    journal fristpage62601
    journal lastpage062601-14
    treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian