contributor author | Chang, Jui-Yung | |
contributor author | Wang, Hao | |
contributor author | Wang, Liping | |
date accessioned | 2017-11-25T07:16:50Z | |
date available | 2017-11-25T07:16:50Z | |
date copyright | 2017/7/2 | |
date issued | 2017 | |
identifier issn | 0022-1481 | |
identifier other | ht_139_05_052401.pdf | |
identifier uri | http://138.201.223.254:8080/yetl1/handle/yetl/4234229 | |
description abstract | The present study focuses on nanowire-based metamaterials selective solar absorbers. Finite-difference time-domain (FDTD) simulation is employed for numerically designing a broadband solar absorber made of lossy tungsten nanowires which exhibit spectral selectivity due to the excitation of magnetic polariton (MP). An inductor–capacitor circuit model of the nanowire array is developed in order to predict the resonance wavelengths of the MP harmonic modes. The effects of geometric parameters such as nanowire diameter, height, and array period are investigated and understood by the sweep of geometric parameters, which tunes the MP resonance and the resulting optical and radiative properties. In addition, the optical properties and conversion efficiency of this nanowire-based absorber are both demonstrated to be insensitive on incidence angles, which illustrates the potential applicability of the proposed nanowire-based metamaterial as a high-efficiency wide-angle selective solar absorber. The results show that the nanowire-based selective solar absorber with base geometric parameters can reach 83.6% of conversion efficiency with low independence of incident angle. The results will facilitate the design of novel low-cost and high-efficiency materials for enhancing solar thermal energy harvesting and conversion. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Tungsten Nanowire Metamaterials as Selective Solar Thermal Absorbers by Excitation of Magnetic Polaritons | |
type | Journal Paper | |
journal volume | 139 | |
journal issue | 5 | |
journal title | Journal of Heat Transfer | |
identifier doi | 10.1115/1.4034845 | |
journal fristpage | 52401 | |
journal lastpage | 052401-8 | |
tree | Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 005 | |
contenttype | Fulltext | |