YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessment of Thermal Damage During Skin Tumor Treatment Using Thermal Wave Model: A Realistic Approach

    Source: Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 005::page 51102
    Author:
    Verma, A. K.
    ,
    Rath, P.
    ,
    Mahapatra, S. K.
    DOI: 10.1115/1.4036015
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this study, a three-layered skin tissue has been modeled to assess the heat transfer characteristics in laser skin tumor–tissue interaction. A finite-volume-based two-dimensional numerical bioheat transfer model has been put together to study the damage prediction of healthy tissues by considering both Fourier and non-Fourier laws. The combination of the bioheat transfer equation with Fourier law forms the parabolic equation (Pennes model) and with the non-Fourier equation forms the hyperbolic equation (thermal wave model). In this paper, the laser source is provided on the outer layer of the skin to dismantle the undesired tumor region exemplified as inhomogeneity (tumor) present in the intermediate layer. Heat input through the laser source is on until it reaches the tumor-killing criteria. The heat transport equation has been discretized by the finite volume method (FVM). The finite-volume-based numerical model is developed in such a way that the non-Fourier model predictions can be obtained through conventional Fourier-based solver. The central difference scheme is adopted for discretizing the spatial derivative terms. An implicit scheme is applied to treat the transient terms in the model. For few cases of the hyperbolic problems, certain limitation for a chosen implicit scheme has also been addressed in this paper. The results are validated with the existing literatures. The evaluated results are based on both the Fourier and the non-Fourier model, to investigate the temperature distribution and thermal damage by ensuring irreversible thermal damage in the whole tumor region placed in the dermis layer. Thermal damage of the healthy tissue is found to be more in the time scale of the thermal wave model.
    • Download: (1.805Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessment of Thermal Damage During Skin Tumor Treatment Using Thermal Wave Model: A Realistic Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234217
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorVerma, A. K.
    contributor authorRath, P.
    contributor authorMahapatra, S. K.
    date accessioned2017-11-25T07:16:49Z
    date available2017-11-25T07:16:49Z
    date copyright2017/7/3
    date issued2017
    identifier issn0022-1481
    identifier otherht_139_05_051102.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234217
    description abstractIn this study, a three-layered skin tissue has been modeled to assess the heat transfer characteristics in laser skin tumor–tissue interaction. A finite-volume-based two-dimensional numerical bioheat transfer model has been put together to study the damage prediction of healthy tissues by considering both Fourier and non-Fourier laws. The combination of the bioheat transfer equation with Fourier law forms the parabolic equation (Pennes model) and with the non-Fourier equation forms the hyperbolic equation (thermal wave model). In this paper, the laser source is provided on the outer layer of the skin to dismantle the undesired tumor region exemplified as inhomogeneity (tumor) present in the intermediate layer. Heat input through the laser source is on until it reaches the tumor-killing criteria. The heat transport equation has been discretized by the finite volume method (FVM). The finite-volume-based numerical model is developed in such a way that the non-Fourier model predictions can be obtained through conventional Fourier-based solver. The central difference scheme is adopted for discretizing the spatial derivative terms. An implicit scheme is applied to treat the transient terms in the model. For few cases of the hyperbolic problems, certain limitation for a chosen implicit scheme has also been addressed in this paper. The results are validated with the existing literatures. The evaluated results are based on both the Fourier and the non-Fourier model, to investigate the temperature distribution and thermal damage by ensuring irreversible thermal damage in the whole tumor region placed in the dermis layer. Thermal damage of the healthy tissue is found to be more in the time scale of the thermal wave model.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAssessment of Thermal Damage During Skin Tumor Treatment Using Thermal Wave Model: A Realistic Approach
    typeJournal Paper
    journal volume139
    journal issue5
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4036015
    journal fristpage51102
    journal lastpage051102-9
    treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian