YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Visual Onset of Nucleate Boiling in Water Spray Cooling on Hot Steel Plate

    Source: Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 002::page 20912
    Author:
    Lee, Jungho
    ,
    Lee, Sang Gun
    ,
    Kim, Jinsub
    DOI: 10.1115/1.4035582
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The onset of nucleate boiling in water spray cooling on hot steel plate was investigated by a simultaneous boiling visualization and heat transfer measurement. The boiling phenomena were visualized with 4K video camera and the surface temperature of the hot steel plate was determined by solving 2-D inverse heat conduction during water spray cooling. The temperature was measured by a sampling rate of 10 data/sec. The hot steel plate was initially heated up to 900°C and the coolant temperature was kept at a constant temperature of 20°C. The spray nozzle with fullcone pattern was mounted with the three different heights (100, 200 and 300 mm). The more spray height was increased, the more scattered the spray pattern became, which could affect the partial spray intensity and overall cooling uniformity. The lower spray nozzle height of 100 mm shows the steep temperature gradient in inner zone. As the spray particles are more intense at inner zone which wets faster than outer zone. But the higher spray nozzle height of 300 mm, the temperature profile keeps constant within the 400 sec. After this time, the outer zone is wetted faster than inner zone. At the middle height of 200 mm, although the temperature gradient in inner zone is slightly higher than that in outer zone, the overall surface wetting is relatively uniform in the inner and outer zone. These results exhibit that the spray cooling uniformity can be controlled with optimized spray nozzle height. Furthermore the boiling visualization agrees well with the onset of nucleate boiling in surface temperature profiles.
    • Download: (1.161Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Visual Onset of Nucleate Boiling in Water Spray Cooling on Hot Steel Plate

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234157
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorLee, Jungho
    contributor authorLee, Sang Gun
    contributor authorKim, Jinsub
    date accessioned2017-11-25T07:16:43Z
    date available2017-11-25T07:16:43Z
    date copyright2017/6/1
    date issued2017
    identifier issn0022-1481
    identifier otherht_139_02_020912.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234157
    description abstractThe onset of nucleate boiling in water spray cooling on hot steel plate was investigated by a simultaneous boiling visualization and heat transfer measurement. The boiling phenomena were visualized with 4K video camera and the surface temperature of the hot steel plate was determined by solving 2-D inverse heat conduction during water spray cooling. The temperature was measured by a sampling rate of 10 data/sec. The hot steel plate was initially heated up to 900°C and the coolant temperature was kept at a constant temperature of 20°C. The spray nozzle with fullcone pattern was mounted with the three different heights (100, 200 and 300 mm). The more spray height was increased, the more scattered the spray pattern became, which could affect the partial spray intensity and overall cooling uniformity. The lower spray nozzle height of 100 mm shows the steep temperature gradient in inner zone. As the spray particles are more intense at inner zone which wets faster than outer zone. But the higher spray nozzle height of 300 mm, the temperature profile keeps constant within the 400 sec. After this time, the outer zone is wetted faster than inner zone. At the middle height of 200 mm, although the temperature gradient in inner zone is slightly higher than that in outer zone, the overall surface wetting is relatively uniform in the inner and outer zone. These results exhibit that the spray cooling uniformity can be controlled with optimized spray nozzle height. Furthermore the boiling visualization agrees well with the onset of nucleate boiling in surface temperature profiles.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleVisual Onset of Nucleate Boiling in Water Spray Cooling on Hot Steel Plate
    typeJournal Paper
    journal volume139
    journal issue2
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4035582
    journal fristpage20912
    journal lastpage020912-1
    treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian