YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Numerical Visualization of Droplet-Induced Crown Splashing Dynamics

    Source: Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 002::page 20909
    Author:
    Zhang, Taolue
    ,
    Muthusamy, J. P.
    ,
    Alvarado, Jorge
    ,
    Kanjirakat, Anoop
    ,
    Sadr, Reza
    DOI: 10.1115/1.4035579
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The objective of this study was to visualize the droplet-induced crown splashing dynamics at high spatial and temporal resolutions. In this work, the effects of droplet train impingement on crown splashing dynamics were investigated experimentally and numerically. Experimentally, a HFE-7100 droplet train was produced using a piezo-electric droplet generator at a frequency ( f ) of 7500 Hz resulting in a droplet Weber number (We) of 489. Droplet-induced crown splashing dynamics was captured using a high-speed imaging system. It was observed that the free rim of the droplet-induced crown was smooth and axisymmetric during the early crown propagation phases (t*< 5, where t* = 2πft). However, development of cusps was observed on the free rim during the intermediate phases (5< t* <8.5). It was found that the sites of the spikes distributed almost uniformly along the periphery of the free rim. At late phases (t* > 8.5), fingering, detachment and secondary droplets (i.e. splashing) were observed on the free rim. Results show that the number of cusps (finally becoming fingers and spikes) based on experiments (ncups,exp) agrees well with the prediction (ncups,th) given by the Plateau-Rayleigh instability theory. Numerical simulations were carried out using a 3D transient coupled level set-volume of fluid (CLSVOF) solver with Courant number less than 1. A grid independence study was performed to ensure the results were independent of grid size. Reasonable agreement was reached between the numerical and experimental data in terms of crown morphology at different phases. This study should lead to a better understanding of the evolution of droplet-induced crown morphology at splashing conditions.
    • Download: (319.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Numerical Visualization of Droplet-Induced Crown Splashing Dynamics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234154
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorZhang, Taolue
    contributor authorMuthusamy, J. P.
    contributor authorAlvarado, Jorge
    contributor authorKanjirakat, Anoop
    contributor authorSadr, Reza
    date accessioned2017-11-25T07:16:43Z
    date available2017-11-25T07:16:43Z
    date copyright2017/6/1
    date issued2017
    identifier issn0022-1481
    identifier otherht_139_02_020909.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234154
    description abstractThe objective of this study was to visualize the droplet-induced crown splashing dynamics at high spatial and temporal resolutions. In this work, the effects of droplet train impingement on crown splashing dynamics were investigated experimentally and numerically. Experimentally, a HFE-7100 droplet train was produced using a piezo-electric droplet generator at a frequency ( f ) of 7500 Hz resulting in a droplet Weber number (We) of 489. Droplet-induced crown splashing dynamics was captured using a high-speed imaging system. It was observed that the free rim of the droplet-induced crown was smooth and axisymmetric during the early crown propagation phases (t*< 5, where t* = 2πft). However, development of cusps was observed on the free rim during the intermediate phases (5< t* <8.5). It was found that the sites of the spikes distributed almost uniformly along the periphery of the free rim. At late phases (t* > 8.5), fingering, detachment and secondary droplets (i.e. splashing) were observed on the free rim. Results show that the number of cusps (finally becoming fingers and spikes) based on experiments (ncups,exp) agrees well with the prediction (ncups,th) given by the Plateau-Rayleigh instability theory. Numerical simulations were carried out using a 3D transient coupled level set-volume of fluid (CLSVOF) solver with Courant number less than 1. A grid independence study was performed to ensure the results were independent of grid size. Reasonable agreement was reached between the numerical and experimental data in terms of crown morphology at different phases. This study should lead to a better understanding of the evolution of droplet-induced crown morphology at splashing conditions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental and Numerical Visualization of Droplet-Induced Crown Splashing Dynamics
    typeJournal Paper
    journal volume139
    journal issue2
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4035579
    journal fristpage20909
    journal lastpage020909-1
    treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian