YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    High Speed SPR Visualization of Frost Propagation Inside a Subcooled Water Droplet

    Source: Journal of Heat Transfer:;2017:;volume( 139 ):;issue: 002::page 20905
    Author:
    Jeong, Chan Ho
    ,
    Lee, Seong Hyuk
    ,
    Shin, Dong Hwan
    ,
    Konduru, Vinaykumar
    ,
    Allen, Jeffrey S.
    ,
    Choi, Chang Kyoung
    DOI: 10.1115/1.4035575
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A surface plasmon resonance (SPR) imaging microscopy coupled to a high-speed camera is used to visualize the frost propagation inside a subcooled liquid droplet. The SPR experimental setup consists of a 50 nm thick gold-coated cover glass placed on a BK7 dove prism and optically matched using index matching liquid. Collimated monochromatic light of 600 nm wavelength is incident on the gold-glass interface at 71.8°, which corresponds to the SPR minima angle for ice (RI 1.309). Images are captured using Photron APS-RS camera at 1000 fps with a shutter speed of 1 ms. The prism and the gold film are cooled using a thermo-electric cooler (TEC). A water droplet is placed on the gold film and the temperature of the droplet is decreased from room temperature (23.0 ± 1 °C) to below 0 °C. Adjacent to the water droplet, the vapor condensates to form tiny droplets. The tiny condensate droplets would freeze first and the frost propagates through the condensate region. During this period the central droplet is in a subcooled state. The speed of frost propagation through the condensates is slow and takes tens of seconds to cover the gold film with ice. Within a single condensate droplet, however, the frost propagation velocity is expected to be considerably higher. Eventually the frost line reaches the central droplet. There is a delay of few seconds between the frost line reaching the droplet and frost propagation inside the droplet. The point at which frost touches the subcooled droplet acts as a nucleation site for the droplet and the frost propagates in the droplet at high speed. The average velocities of frost propagations in the subcooled liquid droplet were calculated to be 5.2 ± 0.3 cm/s and 7.4 ± 0.5 cm/s, when the gold film temperature was -5.0 ± 1 °C and -7.8 ± 1 °C respectively.
    • Download: (282.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      High Speed SPR Visualization of Frost Propagation Inside a Subcooled Water Droplet

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234148
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorJeong, Chan Ho
    contributor authorLee, Seong Hyuk
    contributor authorShin, Dong Hwan
    contributor authorKonduru, Vinaykumar
    contributor authorAllen, Jeffrey S.
    contributor authorChoi, Chang Kyoung
    date accessioned2017-11-25T07:16:42Z
    date available2017-11-25T07:16:42Z
    date copyright2017/6/1
    date issued2017
    identifier issn0022-1481
    identifier otherht_139_02_020905.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234148
    description abstractA surface plasmon resonance (SPR) imaging microscopy coupled to a high-speed camera is used to visualize the frost propagation inside a subcooled liquid droplet. The SPR experimental setup consists of a 50 nm thick gold-coated cover glass placed on a BK7 dove prism and optically matched using index matching liquid. Collimated monochromatic light of 600 nm wavelength is incident on the gold-glass interface at 71.8°, which corresponds to the SPR minima angle for ice (RI 1.309). Images are captured using Photron APS-RS camera at 1000 fps with a shutter speed of 1 ms. The prism and the gold film are cooled using a thermo-electric cooler (TEC). A water droplet is placed on the gold film and the temperature of the droplet is decreased from room temperature (23.0 ± 1 °C) to below 0 °C. Adjacent to the water droplet, the vapor condensates to form tiny droplets. The tiny condensate droplets would freeze first and the frost propagates through the condensate region. During this period the central droplet is in a subcooled state. The speed of frost propagation through the condensates is slow and takes tens of seconds to cover the gold film with ice. Within a single condensate droplet, however, the frost propagation velocity is expected to be considerably higher. Eventually the frost line reaches the central droplet. There is a delay of few seconds between the frost line reaching the droplet and frost propagation inside the droplet. The point at which frost touches the subcooled droplet acts as a nucleation site for the droplet and the frost propagates in the droplet at high speed. The average velocities of frost propagations in the subcooled liquid droplet were calculated to be 5.2 ± 0.3 cm/s and 7.4 ± 0.5 cm/s, when the gold film temperature was -5.0 ± 1 °C and -7.8 ± 1 °C respectively.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHigh Speed SPR Visualization of Frost Propagation Inside a Subcooled Water Droplet
    typeJournal Paper
    journal volume139
    journal issue2
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4035575
    journal fristpage20905
    journal lastpage020905-1
    treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian