contributor author | Krautbauer, Kevin | |
contributor author | Sparrow, Eph | |
contributor author | Gorman, John | |
date accessioned | 2017-11-25T07:16:37Z | |
date available | 2017-11-25T07:16:37Z | |
date copyright | 2017/10/8 | |
date issued | 2017 | |
identifier issn | 0098-2202 | |
identifier other | fe_139_11_111104.pdf | |
identifier uri | http://138.201.223.254:8080/yetl1/handle/yetl/4234090 | |
description abstract | The primary focus of this research is the design of wall-driven peristaltic pumps based on first principles with minimal simplifying assumptions and implementation by numerical simulation. Peristaltic pumps are typically used to pump clean/sterile fluids because crosscontamination with exposed pump components cannot occur. Some common biomedical applications include pumping IV fluids through an infusion device and circulating blood by means of heart-lung machines during a bypass surgery. The specific design modality described here involves the structural analysis of a hyperelastic tube-wall medium implemented by numerical simulation. The numerical solutions yielded distributions of stresses and mechanical deflections. In particular, the applied force needed to sustain the prescribed rate of compression was determined. From numerical information about the change of the volume of the bore of the tube, the rate of fluid flow provided by the peristaltic pumping action was calculated and several algebraic equation fits are presented. Other results of practical utility include the spatial distributions of effective stress (von Mises) at a succession of times during the compression cycle and the corresponding information for the spatial and temporal evolution of the displacements. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | A Structural and Fluid-Flow Model for Mechanically Driven Peristaltic Pumping With Application to Therapeutic Drug Delivery | |
type | Journal Paper | |
journal volume | 139 | |
journal issue | 11 | |
journal title | Journal of Fluids Engineering | |
identifier doi | 10.1115/1.4037282 | |
journal fristpage | 111104 | |
journal lastpage | 111104-7 | |
tree | Journal of Fluids Engineering:;2017:;volume( 139 ):;issue: 011 | |
contenttype | Fulltext | |