YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Maximum Skin Friction and Flow Field of a Planar Impinging Gas Jet

    Source: Journal of Fluids Engineering:;2017:;volume( 139 ):;issue: 010::page 101204
    Author:
    Ritcey, Adam
    ,
    McDermid, Joseph R.
    ,
    Ziada, Samir
    DOI: 10.1115/1.4036717
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The maximum skin friction and flow field are experimentally measured on a planar impinging gas jet using oil film interferometry (OFI) and particle image velocimetry (PIV), respectively. A jet nozzle width of W = 15 mm, impingement ratios H/W = 4, 6, 8, 10, and a range of jet Reynolds numbers Rejet = 11,000–40,000 are tested to provide a parametric map of the maximum skin friction. The maximum skin friction predictions of Phares et al. (2000, “The Wall Shear Stress Produced by the Normal Impingement of a Jet on a Flat Surface,” J. Fluid Mech., 418, pp. 351–375) for plane jets agree within 5% of the current OFI results for H/W = 6, but deviates upward of 28% for other impingement ratios. The maximum skin friction is found to be less sensitive to changes in the impingement ratio when the jet standoff distance is roughly within the potential core length of the jet. PIV measurements show turbulence transition locations moving toward the nozzle exit with increasing Reynolds number, saturation in the downstream evolution of the maximum axial turbulence intensity before reaching a maximum peak upon impingement, followed by sudden damping at the plate surface. As the flow is redirected, there is an orthogonal redistribution of the fluctuating velocity components, and local peaks in both the axial and transverse turbulence intensity distributions at the plate locations of the maximum skin friction.
    • Download: (2.752Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Maximum Skin Friction and Flow Field of a Planar Impinging Gas Jet

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234080
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorRitcey, Adam
    contributor authorMcDermid, Joseph R.
    contributor authorZiada, Samir
    date accessioned2017-11-25T07:16:36Z
    date available2017-11-25T07:16:36Z
    date copyright2017/18/7
    date issued2017
    identifier issn0098-2202
    identifier otherfe_139_10_101204.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234080
    description abstractThe maximum skin friction and flow field are experimentally measured on a planar impinging gas jet using oil film interferometry (OFI) and particle image velocimetry (PIV), respectively. A jet nozzle width of W = 15 mm, impingement ratios H/W = 4, 6, 8, 10, and a range of jet Reynolds numbers Rejet = 11,000–40,000 are tested to provide a parametric map of the maximum skin friction. The maximum skin friction predictions of Phares et al. (2000, “The Wall Shear Stress Produced by the Normal Impingement of a Jet on a Flat Surface,” J. Fluid Mech., 418, pp. 351–375) for plane jets agree within 5% of the current OFI results for H/W = 6, but deviates upward of 28% for other impingement ratios. The maximum skin friction is found to be less sensitive to changes in the impingement ratio when the jet standoff distance is roughly within the potential core length of the jet. PIV measurements show turbulence transition locations moving toward the nozzle exit with increasing Reynolds number, saturation in the downstream evolution of the maximum axial turbulence intensity before reaching a maximum peak upon impingement, followed by sudden damping at the plate surface. As the flow is redirected, there is an orthogonal redistribution of the fluctuating velocity components, and local peaks in both the axial and transverse turbulence intensity distributions at the plate locations of the maximum skin friction.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Maximum Skin Friction and Flow Field of a Planar Impinging Gas Jet
    typeJournal Paper
    journal volume139
    journal issue10
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4036717
    journal fristpage101204
    journal lastpage101204-13
    treeJournal of Fluids Engineering:;2017:;volume( 139 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian