YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design Optimization of a Vaneless “Fish-Friendly” Swirl Injector for Small Water Turbines

    Source: Journal of Fluids Engineering:;2017:;volume( 139 ):;issue: 009::page 91105
    Author:
    Airody, Ajith
    ,
    De Montmorency, David
    ,
    Peterson, Sean D.
    DOI: 10.1115/1.4036667
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Large-scale power generation and delivery to remote locales is often prohibitively expensive, due in part to the excessive costs of delivering the materials required to build the necessary infrastructure. In addition, these facilities can have deleterious effects on the local ecosystem. With their reduced physical and environmental footprints, small-scale run-of-river hydroelectric facilities capable of generating power from the modest head provided by streams and rivers are attractive alternatives. Concern remains, however, for the health and safety of the local fish population in these waterways. In order to further reduce the impact of small-scale axial turbine-based hydroelectric facilities on the local fauna, AlfaStar Hydro has proposed a vaneless swirl injector to replace traditional inlet guide vanes (IGVs), as well as a “fish-friendly” rotor designed to rotate relatively slowly and with wide passages between the blades to enable the safe egress of fish drawn into the turbine. Herein, we perform a numerical study of the flow development in the vaneless swirl injector as a function of the number of revolutions and the pitch angle of the rifling in the absence of a rotor toward maximizing turbine efficiency. Swirl intensity, pressure loss in the injector, and axial and circumferential velocity distributions are incorporated as performance metrics into an objective function to optimize the casing design. Results indicate that the number of revolutions of the injector has considerably less influence on overall injector performance than does pitch angle. The casing with the best predicted performance consists of four revolutions at a pitch angle of 25 deg.
    • Download: (2.404Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design Optimization of a Vaneless “Fish-Friendly” Swirl Injector for Small Water Turbines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234061
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorAirody, Ajith
    contributor authorDe Montmorency, David
    contributor authorPeterson, Sean D.
    date accessioned2017-11-25T07:16:31Z
    date available2017-11-25T07:16:31Z
    date copyright2017/28/6
    date issued2017
    identifier issn0098-2202
    identifier otherfe_139_09_091105.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234061
    description abstractLarge-scale power generation and delivery to remote locales is often prohibitively expensive, due in part to the excessive costs of delivering the materials required to build the necessary infrastructure. In addition, these facilities can have deleterious effects on the local ecosystem. With their reduced physical and environmental footprints, small-scale run-of-river hydroelectric facilities capable of generating power from the modest head provided by streams and rivers are attractive alternatives. Concern remains, however, for the health and safety of the local fish population in these waterways. In order to further reduce the impact of small-scale axial turbine-based hydroelectric facilities on the local fauna, AlfaStar Hydro has proposed a vaneless swirl injector to replace traditional inlet guide vanes (IGVs), as well as a “fish-friendly” rotor designed to rotate relatively slowly and with wide passages between the blades to enable the safe egress of fish drawn into the turbine. Herein, we perform a numerical study of the flow development in the vaneless swirl injector as a function of the number of revolutions and the pitch angle of the rifling in the absence of a rotor toward maximizing turbine efficiency. Swirl intensity, pressure loss in the injector, and axial and circumferential velocity distributions are incorporated as performance metrics into an objective function to optimize the casing design. Results indicate that the number of revolutions of the injector has considerably less influence on overall injector performance than does pitch angle. The casing with the best predicted performance consists of four revolutions at a pitch angle of 25 deg.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign Optimization of a Vaneless “Fish-Friendly” Swirl Injector for Small Water Turbines
    typeJournal Paper
    journal volume139
    journal issue9
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4036667
    journal fristpage91105
    journal lastpage091105-6
    treeJournal of Fluids Engineering:;2017:;volume( 139 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian