YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Study of the Effect of Various Recess Shapes on Hybrid Journal Bearing Performance Using Computational Fluid Dynamics and Response Surface Method

    Source: Journal of Fluids Engineering:;2017:;volume( 139 ):;issue: 006::page 61104
    Author:
    Fu, Gen
    ,
    Untaroiu, Alexandrina
    DOI: 10.1115/1.4035952
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Hybrid bearings are mostly used in high-speed and load situations due to their better stability and loading capacity. They are typically designed with recess grooves to enhance both static and dynamic performance of the bearing. Previous theoretical studies on the influence of the recess geometrical shapes often utilize the Reynolds equation method. The aim of this paper is to analytically study the influence of various recess geometrical shapes on hybrid journal bearings. A three-dimensional (3D) computational fluid dynamics (CFD) model of a hybrid journal bearing is built, and a new method of response surface model is employed to determine the equilibrium position of the rotor. Based on the response surface model, an optimization scheme is used to search around the equilibrium position to get an accurate solution. The current analysis includes the geometries of rectangular, circular, triangular, elliptical, and annular shaped recesses. All these different shapes are studied assuming the same operating conditions, and static properties are used as the indices of the bearing performance. This study proposes a new design process using a CFD method with the ability of calculating the equilibrium position. The flow rate, fluid film thickness, and recess flow pattern are analyzed for various recess shapes. The CFD model is validated by published experimental data. The results show that the response surface model method is fast and robust in determining the rotor equilibrium position, even though a 3D-CFD model is utilized. The results suggest that recess shape is a dominant factor in hybrid bearing design.
    • Download: (7.669Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Study of the Effect of Various Recess Shapes on Hybrid Journal Bearing Performance Using Computational Fluid Dynamics and Response Surface Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234016
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorFu, Gen
    contributor authorUntaroiu, Alexandrina
    date accessioned2017-11-25T07:16:27Z
    date available2017-11-25T07:16:27Z
    date copyright2017/20/4
    date issued2017
    identifier issn0098-2202
    identifier otherfe_139_06_061104.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234016
    description abstractHybrid bearings are mostly used in high-speed and load situations due to their better stability and loading capacity. They are typically designed with recess grooves to enhance both static and dynamic performance of the bearing. Previous theoretical studies on the influence of the recess geometrical shapes often utilize the Reynolds equation method. The aim of this paper is to analytically study the influence of various recess geometrical shapes on hybrid journal bearings. A three-dimensional (3D) computational fluid dynamics (CFD) model of a hybrid journal bearing is built, and a new method of response surface model is employed to determine the equilibrium position of the rotor. Based on the response surface model, an optimization scheme is used to search around the equilibrium position to get an accurate solution. The current analysis includes the geometries of rectangular, circular, triangular, elliptical, and annular shaped recesses. All these different shapes are studied assuming the same operating conditions, and static properties are used as the indices of the bearing performance. This study proposes a new design process using a CFD method with the ability of calculating the equilibrium position. The flow rate, fluid film thickness, and recess flow pattern are analyzed for various recess shapes. The CFD model is validated by published experimental data. The results show that the response surface model method is fast and robust in determining the rotor equilibrium position, even though a 3D-CFD model is utilized. The results suggest that recess shape is a dominant factor in hybrid bearing design.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Study of the Effect of Various Recess Shapes on Hybrid Journal Bearing Performance Using Computational Fluid Dynamics and Response Surface Method
    typeJournal Paper
    journal volume139
    journal issue6
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4035952
    journal fristpage61104
    journal lastpage061104-19
    treeJournal of Fluids Engineering:;2017:;volume( 139 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian