YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Miniature Viscous Disk Pump: Performance Variations From Non-Newtonian Elastic Turbulence

    Source: Journal of Fluids Engineering:;2017:;volume( 139 ):;issue: 002::page 21104
    Author:
    Ligrani, Phil
    ,
    Lund, Benjamin
    ,
    Fatemi, Arshia
    DOI: 10.1115/1.4034522
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Within the present investigation, a miniature viscous disk pump (VDP) is utilized to characterize and quantify non-Newtonian fluid elastic turbulence effects, relative to Newtonian flow behavior. Such deviations from Newtonian behavior are induced by adding polyacrylamide to purified water. The VDP consists of a 10.16 mm diameter disk that rotates above a C-shaped channel with inner and outer radii of 1.19 mm and 2.38 mm, respectively. A channel depth of 230 μm is employed. Fluid inlet and outlet ports are located at the ends of the C-shaped channel. Experimental data are given for rotational speeds of 126 1/s, 188 1/s, 262 1/s, and 366 1/s, pressure rises as high as 700 Pa, and flow rates up to approximately 0.00000005 m3/s. Reynolds number ranges from 2.9 to 6.5 for the non-Newtonian polyacrylamide solution flows and from 51.6 to 149.8 for the Newtonian pure water flows. To characterize deviations due to non-Newtonian elastic turbulence phenomena, two new parameters are introduced, PrR and HCR, where HCR is the ratio of head coefficient (HC) for the polyacrylamide solution and head coefficient for the water solution, and PrR is the ratio of pump power for the polyacrylamide solution and pump power for the water solution. Relative to Newtonian, pure water flows, the polyacrylamide solution flows give pump head coefficient data, dimensional pressure rise data, slip coefficients (SCs), specific speed (SS) values, and dimensional power data, which show significant variations and differences as they vary with flow coefficient (FC) or dimensional volumetric flow rate. Also important are different ranges of specific speed (SS) for the pure water and polyacrylamide solutions, and a lower range of SC or slip coefficient values for the polyacrylamide solution flows, compared to the pure water flows. These variations are due to increased elastic turbulence losses, which occur as viscosity magnitudes increase and the elastic polymers are excited by mechanical stress, which causes them to extend, deform, stretch, and intertwine.
    • Download: (1.282Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Miniature Viscous Disk Pump: Performance Variations From Non-Newtonian Elastic Turbulence

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4233955
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorLigrani, Phil
    contributor authorLund, Benjamin
    contributor authorFatemi, Arshia
    date accessioned2017-11-25T07:16:20Z
    date available2017-11-25T07:16:20Z
    date copyright2016/3/11
    date issued2017
    identifier issn0098-2202
    identifier otherfe_139_02_021104.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233955
    description abstractWithin the present investigation, a miniature viscous disk pump (VDP) is utilized to characterize and quantify non-Newtonian fluid elastic turbulence effects, relative to Newtonian flow behavior. Such deviations from Newtonian behavior are induced by adding polyacrylamide to purified water. The VDP consists of a 10.16 mm diameter disk that rotates above a C-shaped channel with inner and outer radii of 1.19 mm and 2.38 mm, respectively. A channel depth of 230 μm is employed. Fluid inlet and outlet ports are located at the ends of the C-shaped channel. Experimental data are given for rotational speeds of 126 1/s, 188 1/s, 262 1/s, and 366 1/s, pressure rises as high as 700 Pa, and flow rates up to approximately 0.00000005 m3/s. Reynolds number ranges from 2.9 to 6.5 for the non-Newtonian polyacrylamide solution flows and from 51.6 to 149.8 for the Newtonian pure water flows. To characterize deviations due to non-Newtonian elastic turbulence phenomena, two new parameters are introduced, PrR and HCR, where HCR is the ratio of head coefficient (HC) for the polyacrylamide solution and head coefficient for the water solution, and PrR is the ratio of pump power for the polyacrylamide solution and pump power for the water solution. Relative to Newtonian, pure water flows, the polyacrylamide solution flows give pump head coefficient data, dimensional pressure rise data, slip coefficients (SCs), specific speed (SS) values, and dimensional power data, which show significant variations and differences as they vary with flow coefficient (FC) or dimensional volumetric flow rate. Also important are different ranges of specific speed (SS) for the pure water and polyacrylamide solutions, and a lower range of SC or slip coefficient values for the polyacrylamide solution flows, compared to the pure water flows. These variations are due to increased elastic turbulence losses, which occur as viscosity magnitudes increase and the elastic polymers are excited by mechanical stress, which causes them to extend, deform, stretch, and intertwine.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMiniature Viscous Disk Pump: Performance Variations From Non-Newtonian Elastic Turbulence
    typeJournal Paper
    journal volume139
    journal issue2
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4034522
    journal fristpage21104
    journal lastpage021104-10
    treeJournal of Fluids Engineering:;2017:;volume( 139 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian