YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Laser Repair With Addition of Nano-WC on Microstructure and Fracture Behavior of 304 Stainless Steel

    Source: Journal of Engineering Materials and Technology:;2017:;volume( 139 ):;issue: 004::page 41002
    Author:
    Jiang, Wei
    ,
    Jiang, Xianfeng
    DOI: 10.1115/1.4036586
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Precracked 304 stainless steel (304SS) compact tension (CT) specimens repaired by laser with addition of different weight fractions of nano-tungsten carbide (nano-WC) were studied to investigate the effects of nano-WC on the fracture behavior and microstructure. Crack open displacements (CODs) measured by a digital image correlation (DIC) system were compared among specimens with different treatments. Microstructures were examined by scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS). The results indicate an overall improvement of microstructure and fracture behavior. The specimen repaired by the addition of 5% nano-WC shows the most significant improvement from the current study. Both metallurgical bonding at the interface and fine equiaxial grains in the repaired layer are observed. The densification process of the repaired layer is also improved. In addition, an approximately 10–30% reduction of COD values was observed as the applied load varied from 1 to 20 kN. However, excessive addition of nano-WC led to the agglomeration and inhomogeneous distribution of WC nanoparticles in the repaired layers, resulting in the formation of microcracks. The fracture parameter COD shows a close relationship with the microstructure in laser repaired specimens with different powder ratio addition.
    • Download: (5.536Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Laser Repair With Addition of Nano-WC on Microstructure and Fracture Behavior of 304 Stainless Steel

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4233914
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorJiang, Wei
    contributor authorJiang, Xianfeng
    date accessioned2017-11-25T07:16:15Z
    date available2017-11-25T07:16:15Z
    date copyright2017/16/5
    date issued2017
    identifier issn0094-4289
    identifier othermats_139_04_041002.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233914
    description abstractPrecracked 304 stainless steel (304SS) compact tension (CT) specimens repaired by laser with addition of different weight fractions of nano-tungsten carbide (nano-WC) were studied to investigate the effects of nano-WC on the fracture behavior and microstructure. Crack open displacements (CODs) measured by a digital image correlation (DIC) system were compared among specimens with different treatments. Microstructures were examined by scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS). The results indicate an overall improvement of microstructure and fracture behavior. The specimen repaired by the addition of 5% nano-WC shows the most significant improvement from the current study. Both metallurgical bonding at the interface and fine equiaxial grains in the repaired layer are observed. The densification process of the repaired layer is also improved. In addition, an approximately 10–30% reduction of COD values was observed as the applied load varied from 1 to 20 kN. However, excessive addition of nano-WC led to the agglomeration and inhomogeneous distribution of WC nanoparticles in the repaired layers, resulting in the formation of microcracks. The fracture parameter COD shows a close relationship with the microstructure in laser repaired specimens with different powder ratio addition.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLaser Repair With Addition of Nano-WC on Microstructure and Fracture Behavior of 304 Stainless Steel
    typeJournal Paper
    journal volume139
    journal issue4
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.4036586
    journal fristpage41002
    journal lastpage041002-9
    treeJournal of Engineering Materials and Technology:;2017:;volume( 139 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian