YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Material Modeling of Concrete for the Numerical Simulation of Steel Plate Reinforced Concrete Panels Subjected to Impacting Loading

    Source: Journal of Engineering Materials and Technology:;2017:;volume( 139 ):;issue: 002::page 21011
    Author:
    Li, Huiyun
    ,
    Shi, Guangyu
    DOI: 10.1115/1.4035487
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The steel plate reinforced concrete (SC) walls and roofs are effective protective structures in nuclear power plants against aircraft attacks. The mechanical behavior of the concrete in SC panels is very complicated when SC panels are under the action of impacting loading. This paper presents a dynamic material model for concrete subjected to high-velocity impact, in which pressure hardening, strain rate effect, plastic damage, and tensile failure are taken into account. The loading surface of the concrete undergoing plastic deformation is defined based on the extended Drucker–Prager strength criterion and the Johnson–Cook material model. The associated plastic flow rule is utilized to evaluate plastic strains. Two damage parameters are introduced to characterize, respectively, the plastic damage and tensile failure of concrete. The proposed concrete model is implemented into the transient nonlinear dynamic analysis code ls-dyna. The reliability and accuracy of the present concrete material model are verified by the numerical simulations of standard compression and tension tests with different confining pressures and strain rates. The numerical simulation of the impact test of a 1/7.5-scale model of an aircraft penetrating into a half steel plate reinforced concrete (HSC) panel is carried out by using ls-dyna with the present concrete model. The resulting damage pattern of concrete slab and the predicted deformation of steel plate in the HSC panel are in good agreement with the experimental results. The numerical results illustrate that the proposed concrete model is capable of properly charactering the tensile damage and failure of concrete.
    • Download: (2.688Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Material Modeling of Concrete for the Numerical Simulation of Steel Plate Reinforced Concrete Panels Subjected to Impacting Loading

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4233883
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorLi, Huiyun
    contributor authorShi, Guangyu
    date accessioned2017-11-25T07:16:12Z
    date available2017-11-25T07:16:12Z
    date copyright2017/7/2
    date issued2017
    identifier issn0094-4289
    identifier othermats_139_02_021011.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233883
    description abstractThe steel plate reinforced concrete (SC) walls and roofs are effective protective structures in nuclear power plants against aircraft attacks. The mechanical behavior of the concrete in SC panels is very complicated when SC panels are under the action of impacting loading. This paper presents a dynamic material model for concrete subjected to high-velocity impact, in which pressure hardening, strain rate effect, plastic damage, and tensile failure are taken into account. The loading surface of the concrete undergoing plastic deformation is defined based on the extended Drucker–Prager strength criterion and the Johnson–Cook material model. The associated plastic flow rule is utilized to evaluate plastic strains. Two damage parameters are introduced to characterize, respectively, the plastic damage and tensile failure of concrete. The proposed concrete model is implemented into the transient nonlinear dynamic analysis code ls-dyna. The reliability and accuracy of the present concrete material model are verified by the numerical simulations of standard compression and tension tests with different confining pressures and strain rates. The numerical simulation of the impact test of a 1/7.5-scale model of an aircraft penetrating into a half steel plate reinforced concrete (HSC) panel is carried out by using ls-dyna with the present concrete model. The resulting damage pattern of concrete slab and the predicted deformation of steel plate in the HSC panel are in good agreement with the experimental results. The numerical results illustrate that the proposed concrete model is capable of properly charactering the tensile damage and failure of concrete.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMaterial Modeling of Concrete for the Numerical Simulation of Steel Plate Reinforced Concrete Panels Subjected to Impacting Loading
    typeJournal Paper
    journal volume139
    journal issue2
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.4035487
    journal fristpage21011
    journal lastpage021011-12
    treeJournal of Engineering Materials and Technology:;2017:;volume( 139 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian