YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling the Elastic Properties of Reticulated Porous Ceramics

    Source: Journal of Engineering Materials and Technology:;2017:;volume( 139 ):;issue: 001::page 11011
    Author:
    Sedler, Stephen J.
    ,
    Chase, Thomas R.
    ,
    Davidson, Jane H.
    DOI: 10.1115/1.4035098
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A model to predict the elastic material properties of reticulated porous ceramics (RPCs) based on the microstructural geometry is presented. The RPC is represented by a repeating unit structure of truncated octahedrons (tetrakaidecahedrons) with the ligaments represented by the cell edges. The deformations of the ligaments in the cellular structure under applied loads are used to determine the effective moduli and Poisson's ratio of the bulk material. The ligament cross section is represented as having a Plateau border exterior surface with a cusp half-angle that is varied between 0 and 90 deg, and a Plateau border interior void with a cusp half-angle of zero, representative of the ranges seen in RPCs. The ligament cross-sectional area is permitted to vary along its length and the distance between internal and external cusps is assumed constant. The relative density of the foam, corresponding to the length, cusp distances, and external-cusp half-angle of the ligaments, is determined using solid geometry. The relative density has the dominant effect on the moduli, while normalized ligament length varies the moduli by 11–49% at a specified relative density. The impact of the external shape of a ligament on the relative moduli is insignificant. The model is validated through comparisons with the measured elastic properties of RPCs in the literature and new data. The model is the first to consider the effect of the microstructural features of ligaments of RPCs on the elastic moduli of the bulk material.
    • Download: (1.331Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling the Elastic Properties of Reticulated Porous Ceramics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4233870
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorSedler, Stephen J.
    contributor authorChase, Thomas R.
    contributor authorDavidson, Jane H.
    date accessioned2017-11-25T07:16:11Z
    date available2017-11-25T07:16:11Z
    date copyright2016/16/11
    date issued2017
    identifier issn0094-4289
    identifier othermats_139_01_011011.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233870
    description abstractA model to predict the elastic material properties of reticulated porous ceramics (RPCs) based on the microstructural geometry is presented. The RPC is represented by a repeating unit structure of truncated octahedrons (tetrakaidecahedrons) with the ligaments represented by the cell edges. The deformations of the ligaments in the cellular structure under applied loads are used to determine the effective moduli and Poisson's ratio of the bulk material. The ligament cross section is represented as having a Plateau border exterior surface with a cusp half-angle that is varied between 0 and 90 deg, and a Plateau border interior void with a cusp half-angle of zero, representative of the ranges seen in RPCs. The ligament cross-sectional area is permitted to vary along its length and the distance between internal and external cusps is assumed constant. The relative density of the foam, corresponding to the length, cusp distances, and external-cusp half-angle of the ligaments, is determined using solid geometry. The relative density has the dominant effect on the moduli, while normalized ligament length varies the moduli by 11–49% at a specified relative density. The impact of the external shape of a ligament on the relative moduli is insignificant. The model is validated through comparisons with the measured elastic properties of RPCs in the literature and new data. The model is the first to consider the effect of the microstructural features of ligaments of RPCs on the elastic moduli of the bulk material.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling the Elastic Properties of Reticulated Porous Ceramics
    typeJournal Paper
    journal volume139
    journal issue1
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.4035098
    journal fristpage11011
    journal lastpage011011-10
    treeJournal of Engineering Materials and Technology:;2017:;volume( 139 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian