Show simple item record

contributor authorHarun, Nor Farida
contributor authorTucker, David
contributor authorAdams, II, Thomas A.
date accessioned2017-11-25T07:15:51Z
date available2017-11-25T07:15:51Z
date copyright2017/1/2
date issued2017
identifier issn0742-4795
identifier othergtp_139_06_061702.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233710
description abstractThe dynamic behavior of a solid oxide fuel cell gas turbine hybrid system (SOFC/GT) from both open and closed loop transients in response to sudden changes in fuel composition was experimentally investigated. A pilot-scale (200–700 kW) hybrid facility available at the U.S. Department of Energy, National Energy Technology Laboratory was used to perform the experiments using a combination of numerical models and actual equipment. In the open loop configuration, the turbine speed was driven by the thermal effluent fed into the gas turbine system, where the thermal effluent was determined by the feedforward fuel cell control system. However, in the closed loop configuration, a load-based speed control system was used to maintain the turbine speed constant at 40,500 rpm by adjusting the load on the turbine, in addition to the implementation of the fuel cell system control. The open loop transient response showed that the impacts of fuel composition changes on key process variables, such as fuel cell thermal effluent, turbine speed, and cathode feed stream conditions, in the SOFC/GT systems were propagated over the course of the test, except for the cathode inlet temperature. The trajectories of the aforementioned variables are discussed in this paper to better understand the resulting mitigation/propagation behaviors. This will help lead to the development of novel control strategies to mitigate the negative impacts experienced during fuel composition transients of SOFC/GT systems.
publisherThe American Society of Mechanical Engineers (ASME)
titleOpen Loop and Closed Loop Performance of Solid Oxide Fuel Cell Turbine Hybrid Systems During Fuel Composition Changes
typeJournal Paper
journal volume139
journal issue6
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4035646
journal fristpage61702
journal lastpage061702-9
treeJournal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record