YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonglobal Parameter Estimation Using Local Ensemble Kalman Filtering

    Source: Monthly Weather Review:;2014:;volume( 142 ):;issue: 006::page 2150
    Author:
    Bellsky, Thomas
    ,
    Berwald, Jesse
    ,
    Mitchell, Lewis
    DOI: 10.1175/MWR-D-13-00200.1
    Publisher: American Meteorological Society
    Abstract: he authors study parameter estimation for nonglobal parameters in a low-dimensional chaotic model using the local ensemble transform Kalman filter (LETKF). By modifying existing techniques for using observational data to estimate global parameters, they present a methodology whereby spatially varying parameters can be estimated using observations only within a localized region of space. Taking a low-dimensional nonlinear chaotic conceptual model for atmospheric dynamics as a numerical test bed, the authors show that this parameter estimation methodology accurately estimates parameters that vary in both space and time, as well as parameters representing physics absent from the model.
    • Download: (1.091Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonglobal Parameter Estimation Using Local Ensemble Kalman Filtering

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230256
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorBellsky, Thomas
    contributor authorBerwald, Jesse
    contributor authorMitchell, Lewis
    date accessioned2017-06-09T17:31:20Z
    date available2017-06-09T17:31:20Z
    date copyright2014/06/01
    date issued2014
    identifier issn0027-0644
    identifier otherams-86672.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230256
    description abstracthe authors study parameter estimation for nonglobal parameters in a low-dimensional chaotic model using the local ensemble transform Kalman filter (LETKF). By modifying existing techniques for using observational data to estimate global parameters, they present a methodology whereby spatially varying parameters can be estimated using observations only within a localized region of space. Taking a low-dimensional nonlinear chaotic conceptual model for atmospheric dynamics as a numerical test bed, the authors show that this parameter estimation methodology accurately estimates parameters that vary in both space and time, as well as parameters representing physics absent from the model.
    publisherAmerican Meteorological Society
    titleNonglobal Parameter Estimation Using Local Ensemble Kalman Filtering
    typeJournal Paper
    journal volume142
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-13-00200.1
    journal fristpage2150
    journal lastpage2164
    treeMonthly Weather Review:;2014:;volume( 142 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian