Show simple item record

contributor authorBellsky, Thomas
contributor authorBerwald, Jesse
contributor authorMitchell, Lewis
date accessioned2017-06-09T17:31:20Z
date available2017-06-09T17:31:20Z
date copyright2014/06/01
date issued2014
identifier issn0027-0644
identifier otherams-86672.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230256
description abstracthe authors study parameter estimation for nonglobal parameters in a low-dimensional chaotic model using the local ensemble transform Kalman filter (LETKF). By modifying existing techniques for using observational data to estimate global parameters, they present a methodology whereby spatially varying parameters can be estimated using observations only within a localized region of space. Taking a low-dimensional nonlinear chaotic conceptual model for atmospheric dynamics as a numerical test bed, the authors show that this parameter estimation methodology accurately estimates parameters that vary in both space and time, as well as parameters representing physics absent from the model.
publisherAmerican Meteorological Society
titleNonglobal Parameter Estimation Using Local Ensemble Kalman Filtering
typeJournal Paper
journal volume142
journal issue6
journal titleMonthly Weather Review
identifier doi10.1175/MWR-D-13-00200.1
journal fristpage2150
journal lastpage2164
treeMonthly Weather Review:;2014:;volume( 142 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record