YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Multiple Dynamic Initialization Schemes for Tropical Cyclone Prediction

    Source: Monthly Weather Review:;2013:;volume( 141 ):;issue: 011::page 4028
    Author:
    Hendricks, Eric A.
    ,
    Peng, Melinda S.
    ,
    Li, Tim
    DOI: 10.1175/MWR-D-12-00329.1
    Publisher: American Meteorological Society
    Abstract: hree different dynamic initialization schemes for tropical cyclone (TC) prediction in numerical prediction systems are described and evaluated. The first scheme involves the removal of the analyzed vortex, followed by the insertion of a dynamically initialized vortex into the model analyses. This scheme is referred to as the tropical cyclone dynamic initialization scheme (TCDI) because the TC component is nudged to the observed surface pressure in an independent three-dimensional primitive equation model prior to insertion. The second scheme is a 12-h relaxation to the analyses' horizontal momentum before the forecast integration begins, and is called the dynamic initialization (DI) scheme. The third scheme is a combination of the previous two schemes, and is called the two-stage dynamic initialization scheme (TCDI/DI). In the first stage, TCDI is implemented in order to improve the representation of the TC vortex. In the second stage, DI is invoked in order to improve the balance between the inserted TC vortex and its environment. All three dynamic initialization schemes are compared with a control (CNTL) scheme, which creates the initial vortex using synthetic TC observations that match the observed intensity and structure in a three-dimensional variational data assimilation (3DVAR) system. The four schemes are tested on 120 cases in the North Atlantic and western North Pacific basins during 2010 and 2011 using the Naval Research Laboratory's TC prediction model: Coupled Ocean?Atmosphere Mesoscale Prediction System-Tropical Cyclones (COAMPS-TC). It is demonstrated that TCDI/DI performed the best overall with regard to intensity forecasts, reducing the average minimum central pressure error for all lead times by 24.4% compared to the CNTL scheme.
    • Download: (6.652Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Multiple Dynamic Initialization Schemes for Tropical Cyclone Prediction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230097
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorHendricks, Eric A.
    contributor authorPeng, Melinda S.
    contributor authorLi, Tim
    date accessioned2017-06-09T17:30:49Z
    date available2017-06-09T17:30:49Z
    date copyright2013/11/01
    date issued2013
    identifier issn0027-0644
    identifier otherams-86529.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230097
    description abstracthree different dynamic initialization schemes for tropical cyclone (TC) prediction in numerical prediction systems are described and evaluated. The first scheme involves the removal of the analyzed vortex, followed by the insertion of a dynamically initialized vortex into the model analyses. This scheme is referred to as the tropical cyclone dynamic initialization scheme (TCDI) because the TC component is nudged to the observed surface pressure in an independent three-dimensional primitive equation model prior to insertion. The second scheme is a 12-h relaxation to the analyses' horizontal momentum before the forecast integration begins, and is called the dynamic initialization (DI) scheme. The third scheme is a combination of the previous two schemes, and is called the two-stage dynamic initialization scheme (TCDI/DI). In the first stage, TCDI is implemented in order to improve the representation of the TC vortex. In the second stage, DI is invoked in order to improve the balance between the inserted TC vortex and its environment. All three dynamic initialization schemes are compared with a control (CNTL) scheme, which creates the initial vortex using synthetic TC observations that match the observed intensity and structure in a three-dimensional variational data assimilation (3DVAR) system. The four schemes are tested on 120 cases in the North Atlantic and western North Pacific basins during 2010 and 2011 using the Naval Research Laboratory's TC prediction model: Coupled Ocean?Atmosphere Mesoscale Prediction System-Tropical Cyclones (COAMPS-TC). It is demonstrated that TCDI/DI performed the best overall with regard to intensity forecasts, reducing the average minimum central pressure error for all lead times by 24.4% compared to the CNTL scheme.
    publisherAmerican Meteorological Society
    titleEvaluation of Multiple Dynamic Initialization Schemes for Tropical Cyclone Prediction
    typeJournal Paper
    journal volume141
    journal issue11
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-12-00329.1
    journal fristpage4028
    journal lastpage4048
    treeMonthly Weather Review:;2013:;volume( 141 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian