YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Humidity Correction Methods for Vaisala RS92 Tropical Sounding Data

    Source: Journal of Atmospheric and Oceanic Technology:;2015:;volume( 032 ):;issue: 003::page 397
    Author:
    Yu, Hungjui
    ,
    Ciesielski, Paul E.
    ,
    Wang, Junhong
    ,
    Kuo, Hung-Chi
    ,
    Vömel, Holger
    ,
    Dirksen, Ruud
    DOI: 10.1175/JTECH-D-14-00166.1
    Publisher: American Meteorological Society
    Abstract: his study examines the DigiCORA and Global Climate Observing System Reference Upper-Air Network (GRUAN) humidity corrections of Vaisala RS92 radiosondes at three sites over the tropical Indian Ocean and surrounding areas during the Dynamics of the Madden?Julian Oscillation (DYNAMO) field campaign in 2011. The proprietary DigiCORA correction algorithm is built into the ground station software provided by Vaisala, whereas the GRUAN correction is an open source algorithm. Included in the GRUAN data product are uncertainty estimates for their corrections. This information is used to examine the statistical consistency of the various corrections.In general, the algorithms produce a positive relative humidity (RH) correction that increases with altitude related primarily to a solar radiation dry bias adjustment. For example, in daytime soundings the relative RH correction increases from a few percent for temperatures >0°C to 20%?40% between 100 and 200 hPa. Comparison of corrected RH vertical profiles show only small differences (on the order of a few percent or less at any given level) between the DigiCORA and GRUAN algorithms, such that these corrections are considered to be statistically consistent at most levels.In evaluating corrected humidity data with independent estimates of total precipitable water (TPW), good agreement was found at all sites between corrected sounding and ground-based microwave radiometer (MWR) estimates of TPW with mean differences ≤0.9 mm (or <2%), which is well within the uncertainty of these measurements. Overall, the correction algorithms examined herein perform well over a wide range of tropical moisture conditions.
    • Download: (2.429Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Humidity Correction Methods for Vaisala RS92 Tropical Sounding Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228587
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorYu, Hungjui
    contributor authorCiesielski, Paul E.
    contributor authorWang, Junhong
    contributor authorKuo, Hung-Chi
    contributor authorVömel, Holger
    contributor authorDirksen, Ruud
    date accessioned2017-06-09T17:26:01Z
    date available2017-06-09T17:26:01Z
    date copyright2015/03/01
    date issued2015
    identifier issn0739-0572
    identifier otherams-85170.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228587
    description abstracthis study examines the DigiCORA and Global Climate Observing System Reference Upper-Air Network (GRUAN) humidity corrections of Vaisala RS92 radiosondes at three sites over the tropical Indian Ocean and surrounding areas during the Dynamics of the Madden?Julian Oscillation (DYNAMO) field campaign in 2011. The proprietary DigiCORA correction algorithm is built into the ground station software provided by Vaisala, whereas the GRUAN correction is an open source algorithm. Included in the GRUAN data product are uncertainty estimates for their corrections. This information is used to examine the statistical consistency of the various corrections.In general, the algorithms produce a positive relative humidity (RH) correction that increases with altitude related primarily to a solar radiation dry bias adjustment. For example, in daytime soundings the relative RH correction increases from a few percent for temperatures >0°C to 20%?40% between 100 and 200 hPa. Comparison of corrected RH vertical profiles show only small differences (on the order of a few percent or less at any given level) between the DigiCORA and GRUAN algorithms, such that these corrections are considered to be statistically consistent at most levels.In evaluating corrected humidity data with independent estimates of total precipitable water (TPW), good agreement was found at all sites between corrected sounding and ground-based microwave radiometer (MWR) estimates of TPW with mean differences ≤0.9 mm (or <2%), which is well within the uncertainty of these measurements. Overall, the correction algorithms examined herein perform well over a wide range of tropical moisture conditions.
    publisherAmerican Meteorological Society
    titleEvaluation of Humidity Correction Methods for Vaisala RS92 Tropical Sounding Data
    typeJournal Paper
    journal volume32
    journal issue3
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-14-00166.1
    journal fristpage397
    journal lastpage411
    treeJournal of Atmospheric and Oceanic Technology:;2015:;volume( 032 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian