Show simple item record

contributor authorYu, Hungjui
contributor authorCiesielski, Paul E.
contributor authorWang, Junhong
contributor authorKuo, Hung-Chi
contributor authorVömel, Holger
contributor authorDirksen, Ruud
date accessioned2017-06-09T17:26:01Z
date available2017-06-09T17:26:01Z
date copyright2015/03/01
date issued2015
identifier issn0739-0572
identifier otherams-85170.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228587
description abstracthis study examines the DigiCORA and Global Climate Observing System Reference Upper-Air Network (GRUAN) humidity corrections of Vaisala RS92 radiosondes at three sites over the tropical Indian Ocean and surrounding areas during the Dynamics of the Madden?Julian Oscillation (DYNAMO) field campaign in 2011. The proprietary DigiCORA correction algorithm is built into the ground station software provided by Vaisala, whereas the GRUAN correction is an open source algorithm. Included in the GRUAN data product are uncertainty estimates for their corrections. This information is used to examine the statistical consistency of the various corrections.In general, the algorithms produce a positive relative humidity (RH) correction that increases with altitude related primarily to a solar radiation dry bias adjustment. For example, in daytime soundings the relative RH correction increases from a few percent for temperatures >0°C to 20%?40% between 100 and 200 hPa. Comparison of corrected RH vertical profiles show only small differences (on the order of a few percent or less at any given level) between the DigiCORA and GRUAN algorithms, such that these corrections are considered to be statistically consistent at most levels.In evaluating corrected humidity data with independent estimates of total precipitable water (TPW), good agreement was found at all sites between corrected sounding and ground-based microwave radiometer (MWR) estimates of TPW with mean differences ≤0.9 mm (or <2%), which is well within the uncertainty of these measurements. Overall, the correction algorithms examined herein perform well over a wide range of tropical moisture conditions.
publisherAmerican Meteorological Society
titleEvaluation of Humidity Correction Methods for Vaisala RS92 Tropical Sounding Data
typeJournal Paper
journal volume32
journal issue3
journal titleJournal of Atmospheric and Oceanic Technology
identifier doi10.1175/JTECH-D-14-00166.1
journal fristpage397
journal lastpage411
treeJournal of Atmospheric and Oceanic Technology:;2015:;volume( 032 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record