YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Efficiency of Assimilating Satellite Soil Moisture Retrievals in a Land Data Assimilation System Using Different Rainfall Error Models

    Source: Journal of Hydrometeorology:;2012:;Volume( 014 ):;issue: 001::page 368
    Author:
    Maggioni, Viviana
    ,
    Reichle, Rolf H.
    ,
    Anagnostou, Emmanouil N.
    DOI: 10.1175/JHM-D-12-0105.1
    Publisher: American Meteorological Society
    Abstract: he efficiency of assimilating near-surface soil moisture retrievals from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) observations in a Land Data Assimilation System (LDAS) is assessed using satellite rainfall forcing and two different satellite rainfall error models: a complex, multidimensional satellite rainfall error model (SREM2D) and the simpler (control) model (CTRL) used in the NASA Goddard Earth Observing System Model, version 5 LDAS. For the study domain of Oklahoma, LDAS soil moisture estimates improve over the satellite retrievals and the open-loop (no assimilation) land surface model estimates, exhibiting higher daily anomaly correlation coefficients (e.g., 0.36 in the open loop, 0.38 in the AMSR-E, and 0.50 in LDAS for surface soil moisture). The LDAS soil moisture estimates also match the performance of a benchmark model simulation forced with high-quality radar precipitation. Compared to using the CTRL rainfall error model in LDAS, using the more complex SREM2D exhibits only slight improvements in soil moisture estimates.
    • Download: (1.101Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Efficiency of Assimilating Satellite Soil Moisture Retrievals in a Land Data Assimilation System Using Different Rainfall Error Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224814
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorMaggioni, Viviana
    contributor authorReichle, Rolf H.
    contributor authorAnagnostou, Emmanouil N.
    date accessioned2017-06-09T17:14:50Z
    date available2017-06-09T17:14:50Z
    date copyright2013/02/01
    date issued2012
    identifier issn1525-755X
    identifier otherams-81774.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224814
    description abstracthe efficiency of assimilating near-surface soil moisture retrievals from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) observations in a Land Data Assimilation System (LDAS) is assessed using satellite rainfall forcing and two different satellite rainfall error models: a complex, multidimensional satellite rainfall error model (SREM2D) and the simpler (control) model (CTRL) used in the NASA Goddard Earth Observing System Model, version 5 LDAS. For the study domain of Oklahoma, LDAS soil moisture estimates improve over the satellite retrievals and the open-loop (no assimilation) land surface model estimates, exhibiting higher daily anomaly correlation coefficients (e.g., 0.36 in the open loop, 0.38 in the AMSR-E, and 0.50 in LDAS for surface soil moisture). The LDAS soil moisture estimates also match the performance of a benchmark model simulation forced with high-quality radar precipitation. Compared to using the CTRL rainfall error model in LDAS, using the more complex SREM2D exhibits only slight improvements in soil moisture estimates.
    publisherAmerican Meteorological Society
    titleThe Efficiency of Assimilating Satellite Soil Moisture Retrievals in a Land Data Assimilation System Using Different Rainfall Error Models
    typeJournal Paper
    journal volume14
    journal issue1
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-12-0105.1
    journal fristpage368
    journal lastpage374
    treeJournal of Hydrometeorology:;2012:;Volume( 014 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian