Show simple item record

contributor authorMaggioni, Viviana
contributor authorReichle, Rolf H.
contributor authorAnagnostou, Emmanouil N.
date accessioned2017-06-09T17:14:50Z
date available2017-06-09T17:14:50Z
date copyright2013/02/01
date issued2012
identifier issn1525-755X
identifier otherams-81774.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224814
description abstracthe efficiency of assimilating near-surface soil moisture retrievals from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) observations in a Land Data Assimilation System (LDAS) is assessed using satellite rainfall forcing and two different satellite rainfall error models: a complex, multidimensional satellite rainfall error model (SREM2D) and the simpler (control) model (CTRL) used in the NASA Goddard Earth Observing System Model, version 5 LDAS. For the study domain of Oklahoma, LDAS soil moisture estimates improve over the satellite retrievals and the open-loop (no assimilation) land surface model estimates, exhibiting higher daily anomaly correlation coefficients (e.g., 0.36 in the open loop, 0.38 in the AMSR-E, and 0.50 in LDAS for surface soil moisture). The LDAS soil moisture estimates also match the performance of a benchmark model simulation forced with high-quality radar precipitation. Compared to using the CTRL rainfall error model in LDAS, using the more complex SREM2D exhibits only slight improvements in soil moisture estimates.
publisherAmerican Meteorological Society
titleThe Efficiency of Assimilating Satellite Soil Moisture Retrievals in a Land Data Assimilation System Using Different Rainfall Error Models
typeJournal Paper
journal volume14
journal issue1
journal titleJournal of Hydrometeorology
identifier doi10.1175/JHM-D-12-0105.1
journal fristpage368
journal lastpage374
treeJournal of Hydrometeorology:;2012:;Volume( 014 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record