YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Study of the Role of the Parameterization of Heterogeneous Ice Nucleation for the Modeling of Microphysics and Precipitation of a Convective Cloud

    Source: Journal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 009::page 3322
    Author:
    Hiron, T.
    ,
    Flossmann, A. I.
    DOI: 10.1175/JAS-D-15-0026.1
    Publisher: American Meteorological Society
    Abstract: ven though ice formation mechanisms in clouds probably obey all the same thermodynamic principles, the associated mechanical and thermal energy transfers differ with respect to the exact pathway and the associated phases. Consequently, heterogeneous ice nucleation parameterizations play an important role in cloud modeling.The 1.5D bin-resolved microphysics Detailed Scavenging Model (DESCAM) was used to assess the role of the parameterizations for different ice initiation processes. Homogeneous nucleation, deposition freezing, contact freezing, immersion freezing, and condensation freezing were treated explicitly, and their impacts alone and in competition with each other on cloud microphysics and precipitation were studied. The role of efficiently ice-nucleating bacteria on cloud evolution was addressed, as well as means to consider different chemical natures of ice nucleation particles.For the conditions studied, it was found that deposition and contact freezing only played a negligible role with respect to the other ice-nucleating mechanisms. Homogeneous freezing and classical immersion freezing showed a similar behavior. Both freezing rates increase with increasing drop age (i.e., size). This suggests a possibility for regrouping processes in future parameterized cloud models. Condensation freezing parameterization, however, acts at much warmer temperatures in clouds and for much smaller drops. The associated release of latent heat at lower altitudes caused significantly different cloud dynamics with respect to homogeneous/immersion freezing. This suggests that, in future parameterized models, the condensation freezing process needs particular attention, as well as the fact that ice-forming nuclei (IN) are a subset of aerosol particles that are depleted and replenished like the rest of the population.
    • Download: (1.190Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Study of the Role of the Parameterization of Heterogeneous Ice Nucleation for the Modeling of Microphysics and Precipitation of a Convective Cloud

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4219834
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHiron, T.
    contributor authorFlossmann, A. I.
    date accessioned2017-06-09T16:58:27Z
    date available2017-06-09T16:58:27Z
    date copyright2015/09/01
    date issued2015
    identifier issn0022-4928
    identifier otherams-77292.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4219834
    description abstractven though ice formation mechanisms in clouds probably obey all the same thermodynamic principles, the associated mechanical and thermal energy transfers differ with respect to the exact pathway and the associated phases. Consequently, heterogeneous ice nucleation parameterizations play an important role in cloud modeling.The 1.5D bin-resolved microphysics Detailed Scavenging Model (DESCAM) was used to assess the role of the parameterizations for different ice initiation processes. Homogeneous nucleation, deposition freezing, contact freezing, immersion freezing, and condensation freezing were treated explicitly, and their impacts alone and in competition with each other on cloud microphysics and precipitation were studied. The role of efficiently ice-nucleating bacteria on cloud evolution was addressed, as well as means to consider different chemical natures of ice nucleation particles.For the conditions studied, it was found that deposition and contact freezing only played a negligible role with respect to the other ice-nucleating mechanisms. Homogeneous freezing and classical immersion freezing showed a similar behavior. Both freezing rates increase with increasing drop age (i.e., size). This suggests a possibility for regrouping processes in future parameterized cloud models. Condensation freezing parameterization, however, acts at much warmer temperatures in clouds and for much smaller drops. The associated release of latent heat at lower altitudes caused significantly different cloud dynamics with respect to homogeneous/immersion freezing. This suggests that, in future parameterized models, the condensation freezing process needs particular attention, as well as the fact that ice-forming nuclei (IN) are a subset of aerosol particles that are depleted and replenished like the rest of the population.
    publisherAmerican Meteorological Society
    titleA Study of the Role of the Parameterization of Heterogeneous Ice Nucleation for the Modeling of Microphysics and Precipitation of a Convective Cloud
    typeJournal Paper
    journal volume72
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-15-0026.1
    journal fristpage3322
    journal lastpage3339
    treeJournal of the Atmospheric Sciences:;2015:;Volume( 072 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian