YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulated Density Currents beneath Embedded Stratified Layers

    Source: Journal of the Atmospheric Sciences:;2012:;Volume( 069 ):;issue: 007::page 2192
    Author:
    Seigel, Robert B.
    ,
    van den Heever, Susan C.
    DOI: 10.1175/JAS-D-11-0255.1
    Publisher: American Meteorological Society
    Abstract: he goal of this research is to investigate the impacts of a stably stratified layer embedded within a neutrally stratified environment on the behavior of density currents in an effort to extend the environmental regimes examined by Liu and Moncrieff. Such environments frequently support severe weather events. To accomplish this goal, nonhydrostatic numerical model experiments are performed in which the strength and height of the embedded stably stratified layer within a neutrally stratified environment are varied. The 1-km-deep stable layer base is varied between 1, 2, and 3 km AGL. Additionally, the strength of the stable layer is systematically varied between Brunt?Väisälä frequencies of 0.006, 0.012, and 0.018 s?1, following the methodology of Liu and Moncrieff. The model and grid setup are also similar to that of Liu and Moncrieff, utilizing the Arakawa C grid, leapfrog advection, a Robert?Asselin filter, and grid spacing of 100 and 50 m in the horizontal and vertical directions, respectively. Results show that the height of the density current decreases and the propagation speed increases with stronger and lower stable layers, provided that the stable layer is sufficiently thin so as to not act as a gravity wave ducting layer. As the strength of the stable layer increases and the height of this layer decreases, the horizontal pressure gradient driving the density current increases, resulting in faster propagation speeds. Such results have implications for cold pool propagation into more stable environments.
    • Download: (1.411Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulated Density Currents beneath Embedded Stratified Layers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4218803
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorSeigel, Robert B.
    contributor authorvan den Heever, Susan C.
    date accessioned2017-06-09T16:54:36Z
    date available2017-06-09T16:54:36Z
    date copyright2012/07/01
    date issued2012
    identifier issn0022-4928
    identifier otherams-76364.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4218803
    description abstracthe goal of this research is to investigate the impacts of a stably stratified layer embedded within a neutrally stratified environment on the behavior of density currents in an effort to extend the environmental regimes examined by Liu and Moncrieff. Such environments frequently support severe weather events. To accomplish this goal, nonhydrostatic numerical model experiments are performed in which the strength and height of the embedded stably stratified layer within a neutrally stratified environment are varied. The 1-km-deep stable layer base is varied between 1, 2, and 3 km AGL. Additionally, the strength of the stable layer is systematically varied between Brunt?Väisälä frequencies of 0.006, 0.012, and 0.018 s?1, following the methodology of Liu and Moncrieff. The model and grid setup are also similar to that of Liu and Moncrieff, utilizing the Arakawa C grid, leapfrog advection, a Robert?Asselin filter, and grid spacing of 100 and 50 m in the horizontal and vertical directions, respectively. Results show that the height of the density current decreases and the propagation speed increases with stronger and lower stable layers, provided that the stable layer is sufficiently thin so as to not act as a gravity wave ducting layer. As the strength of the stable layer increases and the height of this layer decreases, the horizontal pressure gradient driving the density current increases, resulting in faster propagation speeds. Such results have implications for cold pool propagation into more stable environments.
    publisherAmerican Meteorological Society
    titleSimulated Density Currents beneath Embedded Stratified Layers
    typeJournal Paper
    journal volume69
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-D-11-0255.1
    journal fristpage2192
    journal lastpage2200
    treeJournal of the Atmospheric Sciences:;2012:;Volume( 069 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian