YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Characteristics of VIRS Signals within Pixels of TRMM PR for Warm Rain in the Tropics and Subtropics

    Source: Journal of Applied Meteorology and Climatology:;2016:;volume( 056 ):;issue: 003::page 789
    Author:
    Chen, Yilun
    ,
    Fu, Yunfei
    DOI: 10.1175/JAMC-D-16-0198.1
    Publisher: American Meteorological Society
    Abstract: any data-merging studies of the Tropical Rainfall Measuring Mission (TRMM) satellite involve the integration of high-resolution Visible and Infrared Scanner (VIRS) signals (~2 km) with low-resolution Precipitation Radar (PR) footprint (~5 km) to obtain comprehensive information from observations. Based on the merged dataset, ?warm rain? is generally identified as having averaging 10.8-?m brightness temperatures (TB10.8) exceeding 273 K and the existence of surface rainfall. However, this integration may lead to the misidentification of warm rain because the beam-filling problem (nonuniform TB10.8 in PR pixels) is not fully considered through the method using high-resolution TB10.8 to match low-resolution rainfall. To assess the bias that is associated with identifying warm rain, a new dataset that includes all VIRS signals within the PR resolution is established, and the characteristics of this warm rain in the summers of 1998?2012 are analyzed. The results show that clear-sky pixels and ?cold? pixels probably exist in some apparent warm-rain cases (60.5% and 11.2% of the time, respectively). According to this finding, warm-rain pixels are divided into pixels with and without clear sky. Statistical analysis shows that the existence of clear-sky pixels has a huge influence on the characteristics of the warm-rain pixels. The implications of this study are that many of the warm-rain cases are in fact not warm rain. When studying warm rain, the situation whereby the edges of pixels are clear sky should be fully considered. Also, when computing the weighted average brightness temperature and other characteristics of warm-rain pixels, parts that are clear-sky or cold pixels should be expelled to mitigate beam-filling problems.
    • Download: (2.022Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Characteristics of VIRS Signals within Pixels of TRMM PR for Warm Rain in the Tropics and Subtropics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217728
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorChen, Yilun
    contributor authorFu, Yunfei
    date accessioned2017-06-09T16:51:32Z
    date available2017-06-09T16:51:32Z
    date copyright2017/03/01
    date issued2016
    identifier issn1558-8424
    identifier otherams-75397.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217728
    description abstractany data-merging studies of the Tropical Rainfall Measuring Mission (TRMM) satellite involve the integration of high-resolution Visible and Infrared Scanner (VIRS) signals (~2 km) with low-resolution Precipitation Radar (PR) footprint (~5 km) to obtain comprehensive information from observations. Based on the merged dataset, ?warm rain? is generally identified as having averaging 10.8-?m brightness temperatures (TB10.8) exceeding 273 K and the existence of surface rainfall. However, this integration may lead to the misidentification of warm rain because the beam-filling problem (nonuniform TB10.8 in PR pixels) is not fully considered through the method using high-resolution TB10.8 to match low-resolution rainfall. To assess the bias that is associated with identifying warm rain, a new dataset that includes all VIRS signals within the PR resolution is established, and the characteristics of this warm rain in the summers of 1998?2012 are analyzed. The results show that clear-sky pixels and ?cold? pixels probably exist in some apparent warm-rain cases (60.5% and 11.2% of the time, respectively). According to this finding, warm-rain pixels are divided into pixels with and without clear sky. Statistical analysis shows that the existence of clear-sky pixels has a huge influence on the characteristics of the warm-rain pixels. The implications of this study are that many of the warm-rain cases are in fact not warm rain. When studying warm rain, the situation whereby the edges of pixels are clear sky should be fully considered. Also, when computing the weighted average brightness temperature and other characteristics of warm-rain pixels, parts that are clear-sky or cold pixels should be expelled to mitigate beam-filling problems.
    publisherAmerican Meteorological Society
    titleCharacteristics of VIRS Signals within Pixels of TRMM PR for Warm Rain in the Tropics and Subtropics
    typeJournal Paper
    journal volume56
    journal issue3
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-16-0198.1
    journal fristpage789
    journal lastpage801
    treeJournal of Applied Meteorology and Climatology:;2016:;volume( 056 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian