YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Large-Eddy Simulations of the Impact of Ground-Based Glaciogenic Seeding on Shallow Orographic Convection: A Case Study

    Source: Journal of Applied Meteorology and Climatology:;2016:;volume( 056 ):;issue: 001::page 69
    Author:
    Chu, Xia
    ,
    Geerts, Bart
    ,
    Xue, Lulin
    ,
    Rasmussen, Roy
    DOI: 10.1175/JAMC-D-16-0191.1
    Publisher: American Meteorological Society
    Abstract: his study uses the WRF large-eddy simulation model at 100-m resolution to examine the impact of ground-based glaciogenic seeding on shallow (~2 km deep), cold-based convection producing light snow showers over the Sierra Madre in southern Wyoming on 13 February 2012, as part of the AgI Seeding Cloud Impact Investigation (ASCII). Detailed observations confirm that simulation faithfully captures the orographic flow, convection, and natural snow production, especially on the upwind side. A comparison between treated and control simulations indicates that glaciogenic seeding effectively converts cloud water in convective updrafts to ice and snow in this case, resulting in increased surface precipitation. This comparison further shows that seeding enhances liquid water depletion by vapor deposition, and enhances buoyancy, updraft strength, and cloud-top height. This suggests that the dynamic seeding concept applies, notwithstanding the clouds? low natural supercooled liquid water content. But the simulated cloud-top-height changes are benign (typically <100 m). This, combined with the fact that most natural and enhanced snow growth occurs in a temperature range in which the Bergeron diffusional growth process is effective, suggests that the modeled snowfall enhancement is largely due to static (microphysical) processes rather than dynamic ones.
    • Download: (2.992Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Large-Eddy Simulations of the Impact of Ground-Based Glaciogenic Seeding on Shallow Orographic Convection: A Case Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217723
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorChu, Xia
    contributor authorGeerts, Bart
    contributor authorXue, Lulin
    contributor authorRasmussen, Roy
    date accessioned2017-06-09T16:51:29Z
    date available2017-06-09T16:51:29Z
    date copyright2017/01/01
    date issued2016
    identifier issn1558-8424
    identifier otherams-75392.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217723
    description abstracthis study uses the WRF large-eddy simulation model at 100-m resolution to examine the impact of ground-based glaciogenic seeding on shallow (~2 km deep), cold-based convection producing light snow showers over the Sierra Madre in southern Wyoming on 13 February 2012, as part of the AgI Seeding Cloud Impact Investigation (ASCII). Detailed observations confirm that simulation faithfully captures the orographic flow, convection, and natural snow production, especially on the upwind side. A comparison between treated and control simulations indicates that glaciogenic seeding effectively converts cloud water in convective updrafts to ice and snow in this case, resulting in increased surface precipitation. This comparison further shows that seeding enhances liquid water depletion by vapor deposition, and enhances buoyancy, updraft strength, and cloud-top height. This suggests that the dynamic seeding concept applies, notwithstanding the clouds? low natural supercooled liquid water content. But the simulated cloud-top-height changes are benign (typically <100 m). This, combined with the fact that most natural and enhanced snow growth occurs in a temperature range in which the Bergeron diffusional growth process is effective, suggests that the modeled snowfall enhancement is largely due to static (microphysical) processes rather than dynamic ones.
    publisherAmerican Meteorological Society
    titleLarge-Eddy Simulations of the Impact of Ground-Based Glaciogenic Seeding on Shallow Orographic Convection: A Case Study
    typeJournal Paper
    journal volume56
    journal issue1
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-16-0191.1
    journal fristpage69
    journal lastpage84
    treeJournal of Applied Meteorology and Climatology:;2016:;volume( 056 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian