YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulated and Observed Surface Energy Fluxes and Resulting Playa Breezes during the MATERHORN Field Campaigns

    Source: Journal of Applied Meteorology and Climatology:;2017:;volume( 056 ):;issue: 004::page 915
    Author:
    Massey, Jeffrey D.
    ,
    Steenburgh, W. James
    ,
    Hoch, Sebastian W.
    ,
    Jensen, Derek D.
    DOI: 10.1175/JAMC-D-16-0161.1
    Publisher: American Meteorological Society
    Abstract: eather Research and Forecasting (WRF) Model simulations of the autumn 2012 and spring 2013 Mountain Terrain Atmospheric Modeling and Observations Program (MATERHORN) field campaigns are validated against observations of components of the surface energy balance (SEB) collected over contrasting desert-shrub and playa land surfaces of the Great Salt Lake Desert in northwestern Utah. Over the desert shrub, a large underprediction of sensible heat flux and an overprediction of ground heat flux occurred during the autumn campaign when the model-analyzed soil moisture was considerably higher than the measured soil moisture. Simulations that incorporate in situ measurements of soil moisture into the land surface analyses and use a modified parameterization for soil thermal conductivity greatly reduce these errors over the desert shrub but exacerbate the overprediction of latent heat flux over the playa. The Noah land surface model coupled to WRF does not capture the many unusual playa land surface processes, and simulations that incorporate satellite-derived albedo and reduce the saturation vapor pressure over the playa only marginally improve the forecasts of the SEB components. Nevertheless, the forecast of the 2-m temperature difference between the playa and desert shrub improves, which increases the strength of the daytime off-playa breeze. The stronger off-playa breeze, however, does not substantially reduce the mean absolute errors in overall 10-m wind speed and direction. This work highlights some deficiencies of the Noah land surface model over two common arid land surfaces and demonstrates the importance of accurate land surface analyses over a dryland region.
    • Download: (4.715Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulated and Observed Surface Energy Fluxes and Resulting Playa Breezes during the MATERHORN Field Campaigns

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217710
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorMassey, Jeffrey D.
    contributor authorSteenburgh, W. James
    contributor authorHoch, Sebastian W.
    contributor authorJensen, Derek D.
    date accessioned2017-06-09T16:51:27Z
    date available2017-06-09T16:51:27Z
    date copyright2017/04/01
    date issued2017
    identifier issn1558-8424
    identifier otherams-75381.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217710
    description abstracteather Research and Forecasting (WRF) Model simulations of the autumn 2012 and spring 2013 Mountain Terrain Atmospheric Modeling and Observations Program (MATERHORN) field campaigns are validated against observations of components of the surface energy balance (SEB) collected over contrasting desert-shrub and playa land surfaces of the Great Salt Lake Desert in northwestern Utah. Over the desert shrub, a large underprediction of sensible heat flux and an overprediction of ground heat flux occurred during the autumn campaign when the model-analyzed soil moisture was considerably higher than the measured soil moisture. Simulations that incorporate in situ measurements of soil moisture into the land surface analyses and use a modified parameterization for soil thermal conductivity greatly reduce these errors over the desert shrub but exacerbate the overprediction of latent heat flux over the playa. The Noah land surface model coupled to WRF does not capture the many unusual playa land surface processes, and simulations that incorporate satellite-derived albedo and reduce the saturation vapor pressure over the playa only marginally improve the forecasts of the SEB components. Nevertheless, the forecast of the 2-m temperature difference between the playa and desert shrub improves, which increases the strength of the daytime off-playa breeze. The stronger off-playa breeze, however, does not substantially reduce the mean absolute errors in overall 10-m wind speed and direction. This work highlights some deficiencies of the Noah land surface model over two common arid land surfaces and demonstrates the importance of accurate land surface analyses over a dryland region.
    publisherAmerican Meteorological Society
    titleSimulated and Observed Surface Energy Fluxes and Resulting Playa Breezes during the MATERHORN Field Campaigns
    typeJournal Paper
    journal volume56
    journal issue4
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-16-0161.1
    journal fristpage915
    journal lastpage935
    treeJournal of Applied Meteorology and Climatology:;2017:;volume( 056 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian