YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Regime-Dependent Short-Range Solar Irradiance Forecasting

    Source: Journal of Applied Meteorology and Climatology:;2016:;volume( 055 ):;issue: 007::page 1599
    Author:
    McCandless, T. C.
    ,
    Young, G. S.
    ,
    Haupt, S. E.
    ,
    Hinkelman, L. M.
    DOI: 10.1175/JAMC-D-15-0354.1
    Publisher: American Meteorological Society
    Abstract: his paper describes the development and testing of a cloud-regime-dependent short-range solar irradiance forecasting system for predictions of 15-min-average clearness index (global horizontal irradiance). This regime-dependent artificial neural network (RD-ANN) system classifies cloud regimes with a k-means algorithm on the basis of a combination of surface weather observations, irradiance observations, and GOES-East satellite data. The ANNs are then trained on each cloud regime to predict the clearness index. This RD-ANN system improves over the mean absolute error of the baseline clearness-index persistence predictions by 1.0%, 21.0%, 26.4%, and 27.4% at the 15-, 60-, 120-, and 180-min forecast lead times, respectively. In addition, a version of this method configured to predict the irradiance variability predicts irradiance variability more accurately than does a smart persistence technique.
    • Download: (1.236Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Regime-Dependent Short-Range Solar Irradiance Forecasting

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217644
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorMcCandless, T. C.
    contributor authorYoung, G. S.
    contributor authorHaupt, S. E.
    contributor authorHinkelman, L. M.
    date accessioned2017-06-09T16:51:14Z
    date available2017-06-09T16:51:14Z
    date copyright2016/07/01
    date issued2016
    identifier issn1558-8424
    identifier otherams-75321.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217644
    description abstracthis paper describes the development and testing of a cloud-regime-dependent short-range solar irradiance forecasting system for predictions of 15-min-average clearness index (global horizontal irradiance). This regime-dependent artificial neural network (RD-ANN) system classifies cloud regimes with a k-means algorithm on the basis of a combination of surface weather observations, irradiance observations, and GOES-East satellite data. The ANNs are then trained on each cloud regime to predict the clearness index. This RD-ANN system improves over the mean absolute error of the baseline clearness-index persistence predictions by 1.0%, 21.0%, 26.4%, and 27.4% at the 15-, 60-, 120-, and 180-min forecast lead times, respectively. In addition, a version of this method configured to predict the irradiance variability predicts irradiance variability more accurately than does a smart persistence technique.
    publisherAmerican Meteorological Society
    titleRegime-Dependent Short-Range Solar Irradiance Forecasting
    typeJournal Paper
    journal volume55
    journal issue7
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-15-0354.1
    journal fristpage1599
    journal lastpage1613
    treeJournal of Applied Meteorology and Climatology:;2016:;volume( 055 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian