YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Use of CloudSat Data to Evaluate Retrievals of Total Ice Content in Precipitating Cloud Systems from Ground-Based Operational Radar Measurements

    Source: Journal of Applied Meteorology and Climatology:;2015:;volume( 054 ):;issue: 007::page 1663
    Author:
    Matrosov, Sergey Y.
    DOI: 10.1175/JAMC-D-15-0032.1
    Publisher: American Meteorological Society
    Abstract: n approach is described to retrieve the total amount of ice in a vertical atmospheric column in precipitating clouds observed by the operational Weather Surveillance Radar-1988 Doppler (WSR-88D) systems. This amount expressed as ice water path (IWP) is retrieved using measurements obtained during standard WSR-88D scanning procedures performed when observing precipitation. WSR-88D-based IWP estimates are evaluated using dedicated cloud microphysical retrievals available from the CloudSat and auxiliary spaceborne measurements. The evaluation is performed using measurements obtained in extensive predominantly stratiform precipitation systems containing both ice hydrometeors aloft and rain near the ground. The analysis is based on retrievals of IWP from satellite and the ground-based KWGX and KSHV WSR-88D that are closely collocated in time and space. The comparison results indicate a relatively high correlation between satellite and WSR-88D IWP retrievals, with corresponding correlation coefficients of around 0.7. The mean relative differences between spaceborne and ground-based estimates are around 50%?60%, which is on the order of IWP retrieval uncertainties and is comparable to the differences among various operational CloudSat IWP products. The analysis performed in this study suggests that the quantitative information on ice content of precipitation systems can generally be obtained from operational WSR-88D measurements, when they perform routine scans to observe precipitation. The limitations of WSR-88D IWP estimates due to radar beam tilt restrictions and the overshooting effects due to Earth?s sphericity are discussed.
    • Download: (1.602Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Use of CloudSat Data to Evaluate Retrievals of Total Ice Content in Precipitating Cloud Systems from Ground-Based Operational Radar Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217494
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorMatrosov, Sergey Y.
    date accessioned2017-06-09T16:50:46Z
    date available2017-06-09T16:50:46Z
    date copyright2015/07/01
    date issued2015
    identifier issn1558-8424
    identifier otherams-75186.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217494
    description abstractn approach is described to retrieve the total amount of ice in a vertical atmospheric column in precipitating clouds observed by the operational Weather Surveillance Radar-1988 Doppler (WSR-88D) systems. This amount expressed as ice water path (IWP) is retrieved using measurements obtained during standard WSR-88D scanning procedures performed when observing precipitation. WSR-88D-based IWP estimates are evaluated using dedicated cloud microphysical retrievals available from the CloudSat and auxiliary spaceborne measurements. The evaluation is performed using measurements obtained in extensive predominantly stratiform precipitation systems containing both ice hydrometeors aloft and rain near the ground. The analysis is based on retrievals of IWP from satellite and the ground-based KWGX and KSHV WSR-88D that are closely collocated in time and space. The comparison results indicate a relatively high correlation between satellite and WSR-88D IWP retrievals, with corresponding correlation coefficients of around 0.7. The mean relative differences between spaceborne and ground-based estimates are around 50%?60%, which is on the order of IWP retrieval uncertainties and is comparable to the differences among various operational CloudSat IWP products. The analysis performed in this study suggests that the quantitative information on ice content of precipitation systems can generally be obtained from operational WSR-88D measurements, when they perform routine scans to observe precipitation. The limitations of WSR-88D IWP estimates due to radar beam tilt restrictions and the overshooting effects due to Earth?s sphericity are discussed.
    publisherAmerican Meteorological Society
    titleThe Use of CloudSat Data to Evaluate Retrievals of Total Ice Content in Precipitating Cloud Systems from Ground-Based Operational Radar Measurements
    typeJournal Paper
    journal volume54
    journal issue7
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-15-0032.1
    journal fristpage1663
    journal lastpage1674
    treeJournal of Applied Meteorology and Climatology:;2015:;volume( 054 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian